Fault Attacks on Projective-to-Affine Coordinates Conversion

Diana Maimuț (ENS, France) Cédric Murdica (Secure-IC/Télécom ParisTech, France) David Naccache (ENS, France) Mehdi Tibouchi (NTT Secure Platform, Japan)

Attack by Naccache, Smart and Stern at EUROCRYPT'04

Attack on Elliptic Curve Cryptosystems when the returned point of some signature schemes is given in projective coordinates (X, Y, Z).

Feasibility of the attack

In many systems, results are given in affine coordinates (x, y).

(日) (同) (三) (三)

Attack by Naccache, Smart and Stern at EUROCRYPT'04

Attack on Elliptic Curve Cryptosystems when the returned point of some signature schemes is given in projective coordinates (X, Y, Z).

Feasibility of the attack

In many systems, results are given in affine coordinates (x, y).

Our fault attack model

Injecting an error during the conversion process to recover the missing Z coordinate.

We propose 3 different ways to recover the missing Z coordinate depending on the fault's precision.

・ロン ・四 ・ ・ ヨン ・ ヨン

1 Preliminaries

- 2 Fault on conversion procedure
- 3 Large Unknown Faults

4 Two Faults

5 Known Fault

• • • • • • • • • • • •

Preliminaries

- 2 Fault on conversion procedure
- 3 Large Unknown Faults
- 4 Two Faults
- 5 Known Fault
- 6 Conclusion

< ロ > < 回 > < 回 > < 回 > < 回 >

Preliminaries

- Elliptic Curve Cryptosystems
- Naccache et al.' attack

A B A A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Elliptic Curve

Elliptic Curve on affine coordinates

On a field \mathbb{F}_p , p > 3, an elliptic curve E is the set of points $(x, y) \in \mathbb{F}_p$, satisfying

$$y^2 = x^3 + ax + b$$
, with $4a^3 + 27b^2 \neq 0$

plus the point at infinity \mathcal{O} . Costly formulæ because of inversions.

Elliptic Curve on Jacobian coordinates

To prevent costly division, represent the point (x, y) by (xZ^2, yZ^3, Z) for any non-zero Z. The curve equation is

$$Y^2 = X^3 + aXZ^4 + bZ^6$$

with $\mathcal{O} = (1, 1, 0)$ and the equivalence relation $(X, Y, Z) \sim (\lambda^2 X, \lambda^3 Y, \lambda Z)$. To retrieve the affine coordinates from (X, Y, Z), compute $(x, y) := (x, y, 1) = (X/Z^2, Y/Z^3, 1)$.

Returning the result in Jacobian coordinates

Computation of Q = [k]P

Operation called Elliptic Curve Scalar Multiplication (ECSM)

- with k private
- with P public

Is it secure to return the value Q = (X, Y, Z) in Jacobian coordinates?

Returning the result in Jacobian coordinates

Computation of Q = [k]P

Operation called Elliptic Curve Scalar Multiplication (ECSM)

- with k private
- with P public

Is it secure to return the value Q = (X, Y, Z) in Jacobian coordinates?

No

"Projective coordinates leak" at Eurocrypt 2004 by Naccache, Smart, Stern. Some bits of k can be retrieved.

Preliminaries

- Elliptic Curve Cryptosystems
- Naccache et al.' attack
- 2 Fault on conversion procedure
- 3 Large Unknown Faults

4 Two Faults

5 Known Fault

Conclusion

()

Group law in Jacobian coordinates

$$P_1 = (X_1, Y_1, Z_1) = (x_1 Z_1^2, y_1 Z_1^3, Z_1), P_2 = (X_2, Y_2, 1) = (x_2, y_2, 1)$$

Algorithm ECDBL =
$$\begin{cases} S = 4X_1Y_1^2 \\ M = 3X_1^2 + aZ_1^4 \\ X_3 = -2S + M^2 \\ Y_3 = -8Y_1^4 + M(S - X_3) \\ Z_3 = 2Y_1Z_1 = 2y_1Z_1^4 \\ P_3 = (X_3, Y_3, Z_3) \quad \text{return}(P_3 = 2P_1) \end{cases}$$

Algorithm ECADD =
$$\begin{cases} H = x_2 Z_1^2 - X_1 \\ R = y_2 Z_1^3 - Y_1 \\ X_3 = -H^3 - 2UH^2 + R^2 \\ Y_3 = -SH^3 + R(UH^2 - X_3) \\ Z_3 = Z_1 H = Z_1^3(x_2 - x_1) \\ P_3 = (X_3, Y_3, Z_3) & \text{return}(P_3 = P_1 + P_2) \end{cases}$$

Description of the attack

Output result in Jacobian coordinates

 $[k]P = (X_0, Y_0, Z_0)$ is computed using the Double-and-Add method.

$$A \leftarrow P$$

for $i = N - 2$ downto 0 do
 $A \leftarrow \text{ECDBL}(A)$
if $k_i = 1$ then $A \leftarrow \text{ECADD}(A, P)$
end for
return $A = [k]P = (X_0, Y_0, Z_0)$

If $k_0 = 0$

The last operation to obtain (X_0, Y_0, Z_0) was a doubling. Is this possible?

If $k_0 = 1$

The last operations to obtain (X_0, Y_0, Z_0) was a doubling followed by an addition. Is this possible?

Description of the attack

<u>Notation</u>: (X_1, Y_1, Z_1) are the coordinates of the point A at the end of iteration 1

If $k_0 = 0$

The last operation to obtain $Q = (X_0, Y_0, Z_0)$ was a doubling.

$$Z_0 = 2Y_1Z_1 = 2y_1Z_1^4 \ \Rightarrow \ Z_1^4 = \frac{Z_0}{2y_1}$$

- Z_0 is given in the output
- Halve the point $Q \Rightarrow (x_1, y_1) = [2^{-1} \mod \#E]Q$
- Only Z_1 is unknown

Result

If
$$\frac{Z_0}{2y_1}$$
 is not a fourth root, then $k_0 = 1$

• If $\frac{Z_0}{2y_1}$ is a fourth root, then compute the "possible" (X_1, Y_1, Z_1) points

Description of the attack

In an analogous manner, if $k_0 = 1$, the last operation was an addition. Addition involves a cube for the Z coordinates \Rightarrow try a cubic root.

 (X_0,Y_0,Z_0)

・ロト ・回ト ・ヨト ・ヨト

æ

・ロト ・日本・ ・ ヨト・

 $k_0 = 1$

 $k_0 = 1$

Synthesis of Naccache et al.' attack

- The attack cannot permit to recover all bits of the scalar, only a few. This is enough for some protocols.
- The result must be in Jacobian coordinates (X, Y, Z). In schemes, the results are in affine coordinates (x, y). [k]P is computed in Jacobian coordinates and the point is converted in affine coordinates before returning it.

(日) (同) (三) (三)

Synthesis of Naccache et al.' attack

- The attack cannot permit to recover all bits of the scalar, only a few. This is enough for some protocols.
- The result must be in Jacobian coordinates (X, Y, Z). In schemes, the results are in affine coordinates (x, y). [k]P is computed in Jacobian coordinates and the point is converted in affine coordinates before returning it.

Our contribution

Inject a fault during the conversion procedure, so that the faulty result in affine coordinates contains some information on the missing coordinate Z.

Preliminaries

- 2 Fault on conversion procedure
 - 3 Large Unknown Faults

4 Two Faults

5 Known Fault

6 Conclusion

• • • • • • • • • • • •

Fault on conversion procedure

Conversion Procedure

The following procedure converts $P = (X, Y, Z) = (xZ^2, yZ^3, Z)$ from Jacobian to affine coordinates (x, y).

$$CONVERT(X, Y, Z) = \begin{cases} r &\leftarrow Z^{-1} \\ s &\leftarrow r^{2} \\ x &\leftarrow X \cdot s \\ t &\leftarrow Y \cdot s \\ y &\leftarrow t \cdot r \quad return(x, y) \end{cases}$$

Fault on conversion procedure

Conversion Procedure

The following procedure converts $P = (X, Y, Z) = (xZ^2, yZ^3, Z)$ from Jacobian to affine coordinates (x, y).

$$\operatorname{CONVERT}(X, Y, Z) = \begin{cases} r & \leftarrow Z^{-1} \\ s & \leftarrow r^{2} \\ \tilde{s} = s + \varepsilon & \leftarrow \text{ corruption of s} \\ \tilde{x} & \leftarrow X \cdot \tilde{s} \\ \tilde{t} & \leftarrow Y \cdot \tilde{s} \\ \tilde{y} & \leftarrow \tilde{t} \cdot r & \operatorname{return}(\tilde{x}, \tilde{y}) \end{cases}$$

Equations system

$$\tilde{x} = x + xZ^2 \varepsilon \mod p$$
$$\tilde{y} = y + yZ^2 \varepsilon \mod p$$

Cédric Murdica (Secure-IC/Télécom ParisTech) Fault on Projective-to-Affine Coo

Preliminaries

- 2 Fault on conversion procedure
- 3 Large Unknown Faults
 - 4 Two Faults
 - 5 Known Fault
 - 6 Conclusion

• • • • • • • • • • • •

- E - N

Large Unknown Faults

Large Unknown Faults and a correct result

|--|

・ロト ・回ト ・ヨト ・ヨト

- 31

Large Unknown Faults

Large Unknown Faults and a correct result

Large Unknown Faults and a correct result

Equations system with a known result (x, y)

Unknown values in red

$$\begin{split} \tilde{x}_i &= x + xZ^2 \varepsilon_i \Rightarrow \frac{\tilde{x}_i}{x} - 1 = Z^2 \varepsilon_i \mod p \text{ with } \varepsilon_i < p^a \text{ for some } a < 1 \\ &\Rightarrow u_i = Z^2 \varepsilon_i \mod p \text{ with } u_i = \frac{\tilde{x}_i}{x} - 1 \\ &\Rightarrow \varepsilon = s \cdot \mathbf{u} \mod p \text{ with } s = Z^{-2}, \mathbf{u} = (u_1, ..., u_n), \varepsilon = (\varepsilon_1, ..., \varepsilon_n) \end{split}$$

Recover ε using LLL

- Let *L* be the lattice generated by the vector **u** and $p\mathbb{Z}^n$ in \mathbb{Z}^n
- Since ε satisfies $\varepsilon = s \cdot \mathbf{u} \mod p$, ε is a vector in L, with $\varepsilon_i < p^a$
- Then, we can recover ε directly by reducing *L* using LLL since ε is a small vector of the lattice.

Large Unknown Faults and a correct result

Equations system with a known result (x, y)

Unknown values in red

$$\begin{split} \tilde{x}_i &= x + xZ^2 \varepsilon_i \Rightarrow \frac{\tilde{x}_i}{x} - 1 = Z^2 \varepsilon_i \mod p \text{ with } \varepsilon_i < p^a \text{ for some } a < 1 \\ &\Rightarrow u_i = Z^2 \varepsilon_i \mod p \text{ with } u_i = \frac{\tilde{x}_i}{x} - 1 \\ &\Rightarrow \varepsilon = s \cdot \mathbf{u} \mod p \text{ with } s = Z^{-2}, \mathbf{u} = (u_1, ..., u_n), \varepsilon = (\varepsilon_1, ..., \varepsilon_n) \end{split}$$

Recover ε using LLL

- Let *L* be the lattice generated by the vector **u** and $p\mathbb{Z}^n$ in \mathbb{Z}^n
- Since ε satisfies $\varepsilon = s \cdot u \mod p$, ε is a vector in L, with $\varepsilon_i < p^a$
- Then, we can recover ε directly by reducing L using LLL since ε is a small vector of the lattice.
- Simulation (SAGE): with $p \approx 2^{256}$ and $\varepsilon_i \approx 2^{224}$, only 9 faults are necessary to recover ε , in 3ms.

Preliminaries

- 2 Fault on conversion procedure
- 3 Large Unknown Faults

4 Two Faults

5 Known Fault

6 Conclusion

Two Faults and a correct result

Cédric Murdica (Secure-IC/Télécom ParisTech) Fault on Projective to Affine Coordinates Conversion Thursday, March 7th, 2013 22 / -

・ロト ・回ト ・ヨト ・ヨト

э

Two Faults and a correct result

Equations system

Unknown values in red

$$\frac{\tilde{x_1}}{x} - 1 = u_1 = Z^2 \varepsilon_1 \mod p \text{ with } \varepsilon_1 < p^{1/2}$$
$$\frac{\tilde{x_2}}{x} - 1 = u_2 = Z^2 \varepsilon_2 \mod p \text{ with } \varepsilon_2 < p^{1/2}$$

()

Two Faults and a correct result

Equations system

Unknown values in red

$$\frac{\tilde{x_1}}{x} - 1 = u_1 = Z^2 \varepsilon_1 \mod p \text{ with } \varepsilon_1 < p^{1/2}$$
$$\frac{\tilde{x_2}}{x} - 1 = u_2 = Z^2 \varepsilon_2 \mod p \text{ with } \varepsilon_2 < p^{1/2}$$

Let
$$\alpha = u_1/u_2 = \varepsilon_1 \varepsilon_2^{-1}$$

・ロト ・日本・ ・ ヨト・

Two Faults and a correct result

Equations system

Unknown values in red

$$\frac{\tilde{x_1}}{x} - 1 = u_1 = Z^2 \varepsilon_1 \mod p \text{ with } \varepsilon_1 < p^{1/2}$$
$$\frac{\tilde{x_2}}{x} - 1 = u_2 = Z^2 \varepsilon_2 \mod p \text{ with } \varepsilon_2 < p^{1/2}$$

Let $\alpha = u_1/u_2 = \varepsilon_1 \varepsilon_2^{-1} \Rightarrow$ problem known as the *Rational Number Reconstruction* and is solved using Gauß' algorithm for finding the shortest vector in a bidimensional lattice.

Theorem

Let $\varepsilon_1, \varepsilon_2 \in \mathbb{Z}$ such that $-A \leq \varepsilon_1 \leq A$ and $0 < \varepsilon_2 \leq B$. Let p > 2AB be a prime and $\alpha = \varepsilon_1 \varepsilon_2^{-1} \mod p$. Then $\varepsilon_1, \varepsilon_2$ can be recovered from A, B, α, p in polynomial time.

Recover
$$\varepsilon_1, \varepsilon_2$$
 with $A = B = \lfloor \sqrt{p} \rfloor$, $2AB < p$, $0 \le \varepsilon_1 \le A$ and $0 \le \varepsilon_2 \le B$.

Preliminaries

- 2 Fault on conversion procedure
- 3 Large Unknown Faults

4 Two Faults

5 Known Fault

6 Conclusion

Known Faul

Known Fault

$$= s = Z^{-2}$$

Cédric Murdica (Secure-IC/Télécom ParisTech) Fault on Projective to Affine Coordinates Conversion Thursday, March 7th, 2013 25 / 31

Known Faul

Known Fault

Equation

$$\tilde{x} = x + x \mathbf{Z}^2 \varepsilon$$
 with ε known

The knowledge of x suffices to recover Z.

э

(ロ) (回) (三) (三)

Known Fault on ECDSA

G a public generator of order n. Key pair of an entity (d, P) with P = [d]G.

Algorithm 1 ECDSA Signature	Algorithm 2 ECDSA Verification
Input: Private key <i>d</i> , message <i>m</i>	Input: Public key <i>P</i> , <i>m</i> , signature (<i>r</i> , <i>s</i>)
Output: Signature (<i>r</i> , <i>s</i>)	Output: true or false
$k \xleftarrow{\mathcal{R}} \{1, \ldots, n-1\}$	$w \leftarrow s^{-1} \mod n$
$Q \leftarrow [k]G$	$u_1 \leftarrow w \cdot m \mod n$
$r \leftarrow x_O \mod n$	$u_2 \leftarrow w \cdot r \mod n$
$i \leftarrow k^{-1} \mod n$	$Q \leftarrow [u_1]G + [u_2]P$
$s \leftarrow i(dr + m) \mod n$	$v \leftarrow x_Q \mod n$
return (r, s)	return ($v \stackrel{?}{=} r$)

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Known Fault on ECDSA

Algorithm 3 Wrong ECDSA Signature **Input:** Private key d, message m **Output:** Signature (r, s) $k \stackrel{\mathcal{R}}{\leftarrow} \{1,\ldots,n-1\}$ $(\tilde{x_O}, \tilde{y_O}) \leftarrow [k]G \leftarrow \text{fault during}$ conversion of Q $\tilde{r} \leftarrow \tilde{x_Q} \mod n$ $i \leftarrow k^{-1} \mod n$ $\tilde{s} \leftarrow i(d\tilde{r} + m) \mod n$ return (\tilde{r}, \tilde{s})

Known Fault on ECDSA

Algorithm 5 Wrong ECDSA SignatureInput: Private key d, message mOutput: Signature (r, s) $k \stackrel{\mathcal{R}}{\leftarrow} \{1, \dots, n-1\}$ $(\tilde{x_Q}, \tilde{y_Q}) \leftarrow [k]G \leftarrow$ fault duringconversion of Q $\tilde{r} \leftarrow \tilde{x_Q} \mod n$ $i \leftarrow k^{-1} \mod n$ $\tilde{s} \leftarrow i(d\tilde{r} + m) \mod n$ return (\tilde{r}, \tilde{s})

Algorithm 6 Recover the x coordinate of QInput: P, m, wrong signature (\tilde{r}, \tilde{s}) Output: Q $\tilde{w} \leftarrow \tilde{s}^{-1} \mod n$ $\tilde{u}_1 \leftarrow \tilde{w} \cdot m \mod n$ $\tilde{u}_2 \leftarrow \tilde{w} \cdot \tilde{r} \mod n$ $\tilde{Q} \leftarrow [\tilde{u}_1]G + [\tilde{u}_2]P$ $\tilde{Q} = \begin{bmatrix} \frac{km}{d\tilde{r}+m} \end{bmatrix} G + \begin{bmatrix} \frac{k\tilde{r}}{d\tilde{r}+m} \end{bmatrix} P$ $\tilde{Q} = [k]G = Q$ return Q

Recover the true x coordinate of Q

From (\tilde{r}, \tilde{s}) , we can recover the correct value of x_Q

 \Rightarrow recover the Z coordinate of $Q \Rightarrow$ grab a few bits of k

Preliminaries

- 2 Fault on conversion procedure
- 3 Large Unknown Faults

4 Two Faults

5 Known Fault

• • • • • • • • • • • •

- E - N

Conclusion

Contribution

- A new kind of fault attack at the end of the ECSM
- The attack permits to perform the Naccache et al.'s attack even when the result is returned in affine coordinates

Feasibility of the attack

- Practical attacks on particular elliptic curve schemes (large and two faults)
- Theoretical attack on ECDSA. Theoretical because the fault model is too strong.

Prevention

Check the validity of the result after conversion to affine coordinates.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Thanks for your attention.

・ロト ・回ト ・ヨト ・

Thanks for your attention. Questions?

A D > A B > A B > A

Fault Attacks on Projective-to-Affine Coordinates Conversion

Diana Maimuț (ENS, France) Cédric Murdica (Secure-IC/Télécom ParisTech, France) David Naccache (ENS, France) Mehdi Tibouchi (NTT Secure Platform, Japan)

Image: A math a math