

# Improved Algebraic Fault Analysis: A Case Study on Piccolo and Applications to Other Lightweight Block Ciphers

Fan (Terry) ZHANG<sup>1</sup>, Xinjie ZHAO<sup>2,3</sup>, Shize GUO<sup>3</sup>, Tao WANG<sup>2</sup>, Zhijie (Jerry) SHI<sup>1</sup>

University of Connecticut, USA
 Ordnance Engineering College, China
 The Institute of North Electronic Equipment, China

# Outline



Algebraic Fault Analysis (AFA)



A Case Study of AFA on Piccolo



Applications to Other Lightweight Block Ciphers



## 1 Algebraic Fault Analysis (AFA)





Fault attack: "The cryptographic cipher has to be implemented on a device and deployed in the real world. The device performing the computations may introduce errors, which can enable a malicious adversary to inject and analyze faults for key recovery", with application to on RSA-CRT, 1996.

**COSADE 2013** 

**D. Boneh** 

#### **Differential Fault attack (DFA) on DES, 1997.**





A. Shamir

DFA requires manually analysis fault propagation path, can we find out an automatic way for this?



# Introduction





### Algebraic Fault Analysis (AFA)





#### **Algebraic Fault Attack (AFA)**

#### First proposal, 2010







**COSADE 201**.

#### A lightweight block cipher introduced in CHES 2011

- 64-bit block cipher, small and fast like PRESENT
- uses the Feistel structure.
- uses 80 or 128 bit keys (Piccolo-80, Piccolo-128),
- uses 25 rounds for Piccolo-80 and 31 rounds for Piccolo-128
- simple key schedule which XORed key with many 16-bit constants

2





K. Jeong. Differential Fault Analysis on Block Cipher Piccolo. Cryptology ePrint Archive, available at http://eprint.iacr.org/2012/399.pdf, 2012.

**COSADE 201** 

◆DFA technique

Piccolo-80, six fault injections; Piccolo-128, eight fault injections

Can we break Piccolo with less fault injections use AFA?

2.3

2



. . . . . . . . . . . . . . . . .

Fault model of our work

#### Single nibble fault injected to the 23-rd round, deeper than previous work





How to build the equation set for ciphers which is suitable for efficient AFA? How to represent the fault model when the exact fault locations are unknown?

2





1. build the equation set for the decryption of Piccolo.

**Building the equation set of decryption** 



Building the equation set of encryption



1 Correct state:  $x_1 ||x_2|| \dots x_{16}$ , faulty state injected with nibble (4-bit) fault:  $y_1 ||y_2|| \dots y_{16}$ 

- 2 fault difference  $Z = z_1 || z_2 || ... z_{16}, z_i = x_i \oplus y_i, 1 \le i \le 16$
- 3 *Z* can be divided into four parts,  $Z_1 ||Z_2||Z_3||Z_4$ ,  $Z_i = z_{4i-3} ||z_{4i-2}||z_{4i-1}||z_{4i}$  (1≤*i*≤4)
- 4  $u_i$  denotes whether  $Z_i$  is injected with faults.  $u_i=0$  means fault is injected to  $Z_i$ .

$$u_i = (1 + z_{4i-3})(1 + z_{4i-2})(1 + z_{4i-1})(1 + z_{4i}), \ 1 \le i \le 4$$

5 Only one nibble becomes faulty, only one of  $u_0 ||u_1||u_2||u_3$  is zero.

$$(1+u_0) \lor (1+u_1) \lor (1+u_2) \lor (1+u_3) = 1, \ u_i \lor u_j = 1, \ 1 \le i < j \le 4$$

#### AFA does not need to deduce the accurate fault location as in DFA.

2





Experimental results

Single fault injection in the 23-th round

1) Full encryption set: 18,317 variables, 30,112 ANF equations, 580K script size, the solver can not output the solution within 48 hours

2) Full decryption set: 17,129 variables, 28,016 ANF equations, 553K script size , the attack can succeed.



2





**COSADE 2013** 



Table 6. Results of AFA on AES

| Attack     | Block cipher | Fault model        | Technique | Faults | Time                       |
|------------|--------------|--------------------|-----------|--------|----------------------------|
| 29         | AES-128      | $n_w = 8, n_c = 7$ | DFA       | 1      | 2 <sup>32</sup> encryption |
| 38         | AES-128      | $n_w = 8, n_c = 7$ | DFA       | 1      | 50 minutes                 |
| 1          | AES-128      | $n_w = 8, n_c = 7$ | DFA       | 1      | 5 minutes                  |
| 8          | AES-128      | $n_w = 8, n_c = 7$ | AFA       | 1      | 1 second                   |
| This paper | AES-128      | $n_w = 8, n_c = 7$ | AFA       | 1      | 10 hours                   |

our SAT-based AFA is less efficient than DFA in [29] and [38] 1) The algebraic structure of AES (especially the  $8 \times 8$  S-box) is complicated.

2) The second is that the solver used is not customized for fault attacks on AES, as in [8].



#### AFA on DES

 Table 6. Results of AFA on DES

| Attack     | Block cipher | Fault model                 | Technique | Faults | Time                     |
|------------|--------------|-----------------------------|-----------|--------|--------------------------|
| 5          | DES          | $n_w = 1, n_c = 14, 15, 16$ | DFA       | 3      |                          |
| 10         | DES          | $n_w = 2, n_c = 14$         | AFA       | 2      | 2 <sup>13.35</sup> hours |
| 10         | DES          | $n_w = 2, n_c = 13$         | AFA       | 1      | 2 <sup>17.35</sup> hours |
| 33         | DES          | $n_w = 1, n_c = 12$         | DFA       | 7      | _                        |
| This paper | DES          | $n_w = 1, n_c = 12$         | AFA       | 1      | 10 seconds               |
| 33         | DES          | $n_w = 8, n_c = 12$         | DFA       | 9      | _                        |
| This paper | DES          | $n_w = 8, n_c = 12$         | AFA       | 1      | 60 seconds               |
| 33         | DES          | $n_w = 1, n_c = 11$         | DFA       | 11     | _                        |
| This paper | DES          | $n_w = 1, n_c = 11$         | AFA       | 1      | 3000 seconds             |

Single 1 bit or 8-bit fault injected to the left part of the DES internal state at the end of the 12-th round, a few minutes solving.



3.3

#### AFA on MIBS and LED

Table 6. Results of AFA on MIBS and LED

| Attack     | Block cipher | Fault model         | Technique | Faults | Time                |
|------------|--------------|---------------------|-----------|--------|---------------------|
| 39         | MIBS-64      | $n_w = 4, n_c = 30$ | DFA       | 1      | 60 seconds          |
| This paper | MIBS-64      | $n_w = 4, n_c = 29$ | AFA       | 1      | 1100  seconds       |
| 23         | LED-64       | $n_w = 4, n_c = 30$ | AFA       | 1      | 14.67  hours        |
| This paper | LED-64       | $n_w = 4, n_c = 30$ | AFA       | 1      | $180~{\rm seconds}$ |

#### Single fault injection



More deeper fault model

More efficient AFA

**COSADE 201** 

Lessons learned:

- 1) AFA requires the least number of faults.
- 2) The efficiency of AFA depends on the algebraic structure of the cipher and the fault models.
- 3)The time is short for lightweight ciphers, and longer for block ciphers with complicated algebraic structures such as AES.4) AFA can be used to improve DFA on lightweight block ciphers.

#### Conclusion and Future Work

4



#### Conclusion and Future Work



# Improving AFA

Optimize the equation set Optimize the solving strategy

# Analyzing AFA

What are the dependencies of AFA?When to use AFA, can AFA replace DFA?

COSADE 2013

# Applying AFA

Apply to more complicated ciphers Generate a universal evaluating tool

#### **Defending AFA**

Design AFA resistant nonlinear function



Thanks!

 $Q_{g} \mathcal{A}$ 

*Email : fan.zhang@engineer.uconn.edu zhaoxinjieem@163.com*