ON 3-SHARE THRESHOLD IMPLEMENTATIONS FOR 4-BIT S-BOXES

Sebastian Kutzner¹

Phuong Ha Nguyen ^{1,2} Huaxiong Wang ²

Axel Poschmann 1,2

¹Temasek Lab@NTU

²MAS-SPMS-NTU, Singapore

7-March-2013

Outline

1 Introduction

2 Threshold Implementation

3 Design

4 Experiments

5 Conclusion

- ▲ ロ ▶ ▲ 国 ▶ ▲ 国 ▶ ▲ 国 ● 今 Q @

Outline

1 Introduction

2 Threshold Implementation

3 Design

4 Experiments

5 Conclusion

Motivation, Contributions

Motivation and Contributions

- Reducing the hardware implementation of 3-share TI for a 4-bit S-box.
- 2 Implementation of improved 3-share TI of S-box of PRESENT.
- **3** Side Channel Attack experiments of improved approach.

So, what is TI or 3-share TI and why do we need it?

Outline

1 Introduction

2 Threshold Implementation

3 Design

4 Experiments

5 Conclusion

Threshold Implementations I

2006, Nikova: Threshold Implementation Countermeasure.

Threshold Implementation II

3-share TI of function $f = z \oplus xy$

Threshold Implementation II

Threshold Implementation II

3-share TI of function $f = z \oplus xy$

- $1 \quad x = x_1 \oplus x_2 \oplus x_3$
 - $y = y_1 \oplus y_2 \oplus y_3$
 - $z = z_1 \oplus z_2 \oplus z_3$
- $f = f_1 \oplus f_2 \oplus f_3$
- $4 \quad f_2 = z_3 \oplus x_3 y_3 \oplus x_1 y_3 \oplus x_3 y_1$
- $f_3 = z_1 \oplus x_1 y_1 \oplus x_1 y_2 \oplus x_2 y_1$

Introduction Threshold Implementation Design Experiments Conclusion

Threshold Implementation II

3-share TI of function $f = z \oplus xy$

$$\begin{array}{ccc} (x,y,z) & \longrightarrow & (x_1,x_2,x_3,y_1,y_2,y_3,z_1,z_2,z_3) \\ f & \longrightarrow & (f_1,f_2,f_3) \end{array}$$

3-share TI to PRESENT S-BOX

Since degree of S-box S is 3 \rightarrow 4-share TI. S=F(G()) where degrees of F and G are two.

3-share TI to PRESENT S-BOX

Since degree of S-box S is 3 \rightarrow 4-share TI. S=F(G()) where degrees of F and G are two.

ortname — ON 3-SHARE THRESHOLD IMPLEMENTATIONS FOR 4-BIT S-BOXES

3-share TI to PRESENT S-BOX

Since degree of S-box S is 3 \rightarrow 4-share TI. S=F(G()) where degrees of F and G are two.

1st Observation

$$S' = G(G())$$

1st Observation

$$S' = G(G())$$

1st Observation

$$S^{'} = G(G())$$

1st Observation

2nd Observation

 $G_1 \approx G_2 \approx G_3$

1st Observation

2nd Observation

 $G_1 \approx G_2 \approx G_3$

2nd Observation

Improved 3-share TI to PRESENT S-BOX

1 S:=[12, 5, 6, 11, 9, 0, 10, 13, 3, 14, 15, 8, 4, 7, 1, 2]
2 G:=[0, 4, 1, 5, 2, 15, 11, 6, 8, 12, 9, 13, 14, 3, 7, 10]
3

$$A = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 \end{pmatrix}, B = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{pmatrix}$$
4 $c = (0001)_2 = 1, d = (0101)_2 = 5$
5 $S(x) = A(S'(Bx \oplus c) \oplus d) = A(G(G(Bx \oplus c)) \oplus d), \forall x \in \{0, \dots, 15\}$

Outline

1 Introduction

2 Threshold Implementation

3 Design

4 Experiments

5 Conclusion

Improved Design I

- *ロト *聞 ト * 目 ト ・ 目 ・ つんぐり

Improved Design I

- *ロト *聞 ト *臣 ト *臣 ト 「臣」 わんの

Improved Design II

Table : Area savings for different implementation strategies.

Architecture Strategy	S-box Savings	Storage Strategy	S-box Area share	Overall Savings	Time Overhead
serial	-37.0%	$D ext{-}FF ext{+}en$ $s ext{-}FF ext{+}cg$	11.4% 15.7%	-4.2% -5.8%	5.2
round-based	-40.6%	$D ext{-}FF ext{+}en$ $s ext{-}FF ext{+}cg$	61.8% 67.9%	-25.1% -27.6%	3

Outline

1 Introduction

2 Threshold Implementation

3 Design

4 Experiments

5 Conclusion

Experiment setup

The same security level: 5 million traces

Higher sensitive point for attack

MIA and correlation-enhanced collision attack I

 1) 10,000,000 traces of this implementation and mounted both attacks targeting HD of consecutive outputs of the *G*-stage of original approach.
 2) First successful practical MIA on TI.

3) Correlation-enhanced collision attack requires less traces than MIA.

MIA and correlation-enhanced collision attack II

Sources for univariate leakage, e.g. the state update.
 must be carefully serialized for every clock cycle, which is ongoing work.

Wagner's zero-offset attack

- Only works against the two-share masking scheme for the simulation.
- 2 Does not work against TI.
- In order to attack against TI, the attack should be modified, i.e., by raising the mean-free measurement values to the power of three instead of squaring.
- 4 100 times worse than MIA (in simulation), which shows how sensitive this attack is against noise and why it does not work in practice.

Outline

1 Introduction

2 Threshold Implementation

3 Design

4 Experiments

5 Conclusion

- **1** Two methodologies reducing the hardware implementation of TI are introduced.
- 2 A new design of 3-share TI for PRESENT's S-box is suggested.
- 3 Practical experiments show the security level of the new approach.

THANK YOU FOR LISTENING.

