Read/Write Signals Reconstruction Using Side Channel Analysis for Reverse Engineering*

Damien Marion damien.marion@unilim.fr Antoine Wurcker antoine.wurcker@xlim.fr

XLIM-CNRS, University of Limoges, France * This work has been conducted under the framework of the MARSHAL+ french project

COSADE 2013 - March 7, 2013

institut de recherche

Outline

Introduction		

Outline

2 Characterization Phase

3 Read/Write Signals Reconstruction Process

4 Conclusion and Further Work

Introduction		

Context

Side Channel Analysis for Reverse Engineering (SCARE):

• identify executed instructions

Our study done on:

- AES SubBytes function executed by an ASIC emultating 6502 microcontroller
- Consumption traces
- MODELSIM: values of several internal data (dint{1, 3}, flag_{c, v, $}$
 - z}, opcode, pc, sp, we, rd, reg_{a, x, y})

Notation

•
$$X = (x_{i,j})_{0 \le i < nb_of_cycles}$$
 for the internal data
 $0 \le j < nb_of_internals$

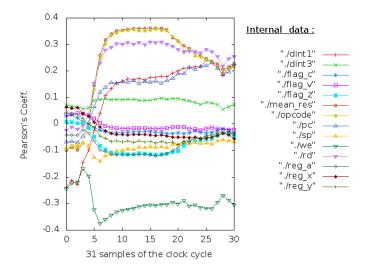
Characterization Phase	Read/Write Signals Reconstruction Process	

Outline

- 3 Read/Write Signals Reconstruction Process
- 4 Conclusion and Further Work

	Characterization Phase	
Hariztonal CPA		

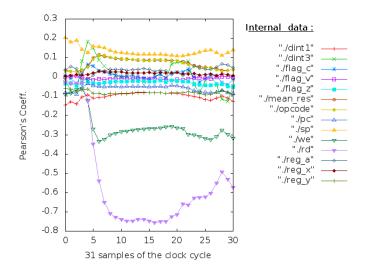
Horizontal CPA Between Consumption Traces and Internal Data


Horizontal CPA computation

•
$$\forall j < \mathsf{nb_of_internals}$$
, we note $x = X(:,j)$

•
$$\forall j < \text{size_of_cycle}$$
, we note $y = Y(:,j)$

$$Corr(x, y) = \frac{\sum_{i=1}^{N} (x_i - \bar{x}) \cdot (y_i - \bar{y})}{\sqrt{\sum_{i=1}^{N} (x_i - \bar{x})^2} \cdot \sqrt{\sum_{i=1}^{N} (y_i - \bar{y})^2}}$$


Horizontal CPA with Hamming Distance

Characterization Phase	
0000000	

Horiztonal CPA

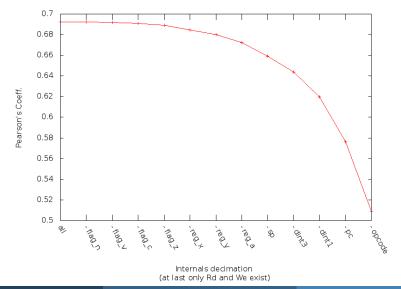
Horizontal CPA with Hamming Weight

Multivariate Linear Correlation

Multivariate Linear Correlation Between Consumption Traces and Set of all Internal Data

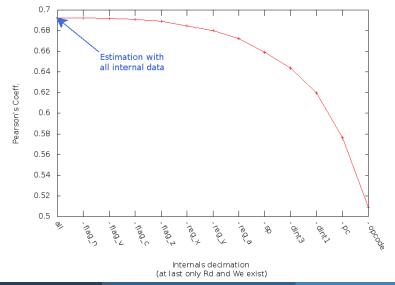
Multivariate Linear Correlation

- $\forall i < nb_of_i$, we note X = X(:, 0:i)
- we note Y = Y(:,9) (the 9th sample gives the best results)

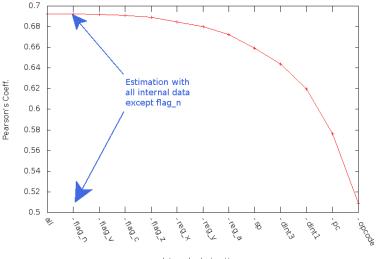

In the model $Y = X \cdot A + \epsilon$,

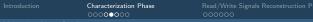
we used Least-Squares Estimation to estimate A

then we evaluate the estimation with Pearson's correlation coefficient.



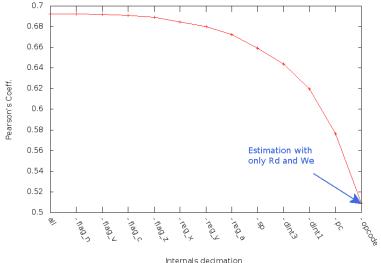
Multivariate Linear Correlation Hamming Distance


Multivariate Linear Correlation Hamming Distance

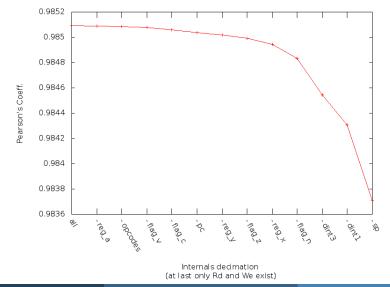

ntroduction Characterization Phase Rea

Multivariate Linear Correlation

Multivariate Linear Correlation Hamming Distance



Internals decimation (at last only Rd and We exist)


Multivariate Linear Correlation

Multivariate Linear Correlation Hamming Distance

Multivariate Linear Correlation Hamming Weight

R/W Signature of Each Opcode

Opcodes Characterization

Each opcode has:

- a fixed length (number of cycles) that never changes
- $\bullet\,$ a constant R/W signature, but some distinct opcodes have the same R/W signature

R/W Signature of Each Opcode

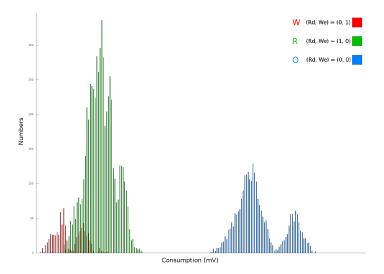
Use MODELSIM Simulation to Determine each Opcode R/W Signature

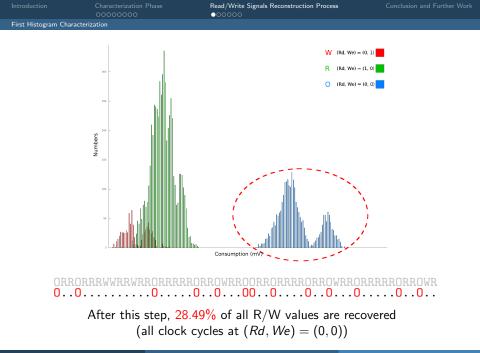
 $\texttt{R} = (\texttt{Rd}, \texttt{We}) = (\texttt{1}, \texttt{0}) \ / \ \texttt{W} = (\texttt{Rd}, \texttt{We}) = (\texttt{0}, \texttt{1}) \ / \ \texttt{0} = (\texttt{Rd}, \texttt{We}) = (\texttt{0}, \texttt{0})$

Signature	nb of opcodes with	Signature	nb of opcodes with
	the same signature		the same signature
RR	21	RRWWWRR	1 (brk)
WRR	2 (php, pha)	ORRORRR	14
ORR	11	OROOWRR	12
ORRR	23	ORROWRR	2 <i>(sta)</i>
OORR	8	ORROORRR	1 (reset)
OWRR	6	ROROOWRR	12
RORRR	28	RRWWWORR	2 (s_nmi, s_irq)
RWWRR	1 (jsr)	ORRROORR	1 (rti)
ROORR	1 (jmp)	ORROOORR	1 (rts)
ROWRR	5	RORROORR	1 (jmp)

	Read/Write Signals Reconstruction Process	

Outline

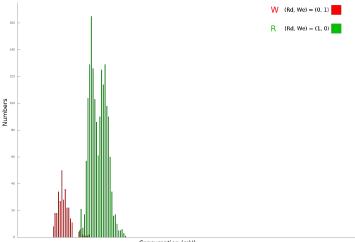

2 Characterization Phase



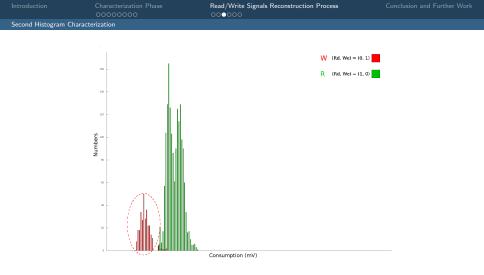
Histogram consumption at the 9^{th} sample of each clock cycle, colors refer to the values of R/W signals.

		Read/Write Signals Reconstruction Process	
Opcodes Signatures Rules	;		

Examples of opcode signature rules


The knowledge of each the opcode's R/W signature permits to set up rules that the reconstructed signal should respect:

- "000" \rightarrow "ORROOORR"
- "WWW." \rightarrow "RRWWWRR"
- ".00" \rightarrow "R.00.R"
- ".0" \rightarrow "RO"
- . . .


After this step, 78.31% of all R/W values are recovered

Histogram consumption at the 9th sample for all cycles that follow a (Rd, We) = (0, 0) cycle, colors refer to the values of R/W signals.

Consumption (mV)

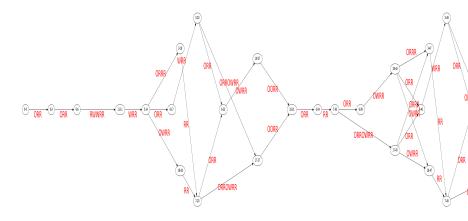
After this step, 81.80% of all R/W values are recovered (only clock cycles at (Rd, We) = (0, 1))

Pattern Matching for R/W Pattern Recognition

Process

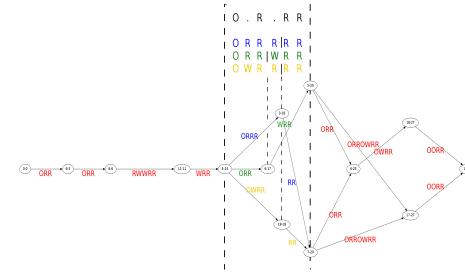
Pattern Matching

- First step: calculate average consumption patterns.
- Second step: try to match the unknown with the known patterns.


OBRO, BRWWRRWBRO, R., BROBROWBROOBROBBRBOBROWBRO, R., BROBBOWR

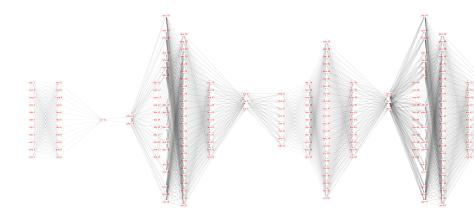
After this step, 87.32% of all R/W values are recovered

	Read/Write Signals Reconstruction Process ○○○○●○	
Tree Computation		


Exhaustive Search Using Tree Representation

For this sequence: ORRO.RRWWRRWRRO.R.RRORROWRROORRORRORROWRRO.R.RRORROWR We obtain this tree representation using all opcode R/W signatures:

Exhaustive Search Using Tree Representation

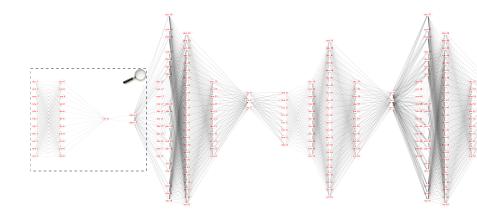

Introduction

Characterization Pha

Read/Write Signals Reconstruction Process ○○○○○● Conclusion and Further Work

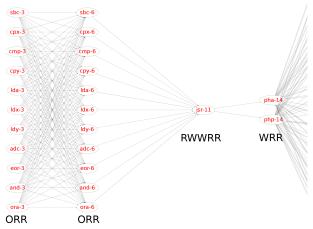
Tree Computation

From the $\ensuremath{\mathsf{R}}/\ensuremath{\mathsf{W}}$ Signature to Opcodes, the Tree Representation


Introduction

Characterization Pha

Read/Write Signals Reconstruction Process ○○○○○● Conclusion and Further Work


Tree Computation

From the $\ensuremath{\mathsf{R}}/\ensuremath{\mathsf{W}}$ Signature to Opcodes, the Tree Representation

Tree Computation

From the $\ensuremath{\mathsf{R}}/\ensuremath{\mathsf{W}}$ Signature to Opcodes, the Tree Representation

	Conclusion and Further Work

Outline

2 Characterization Phase

3 Read/Write Signals Reconstruction Process

	Conclusion and Further Work

Conclusion

- Characterization of 6502 microcontroller.
- Process for R/W signal reconstruction.
- Extract possible opcodes' streams.

Further work

- Study the semantics of the language, to obtain probabilites on opcodes' sequences.
- Doing further experimentations on other executed codes.

	Conclusion and Further Work

Thank you for your attention. Questions ?

Damien Marion Antoine Wurcker damien.marion@unilim.fr antoine.wurcker@xlim.fr

XLIM-CNRS, University of Limoges, France * This work has been conducted under the framework of the MARSHAL+ french project

COSADE 2013 - March 7, 2013

institut de recherche