

GPGPU for side channel attacks

Yanis LINGE^{1,2}, Cécile DUMAS¹, Sophie LAMBERT-LACROIX²

CEA-LETI/MINATEC

UJF-Grenoble 1 / CNRS / UPMF / TIMC-IMAG.

GPGPU for side channel attacks - March 07, 2013

MINATEC CAMPUS

Plan

1 Context

2 GPU

- 3 OpenCL
- 4 Example : CPA
- 5 Comparison
- 6 Example : Rank correlation
- 7 Conclusion

Context : Side Channel Analysis

- The required trace number grows faster than the computation power.
- Need for new implementation techniques.

 \Rightarrow An easy solution : OpenMP, API for parallel programming on multicore CPU.

 \Rightarrow A more efficient solution : GPU.

GPU

- GPU : Graphic Processing Unit.
- Specialized electronic circuit designed to rapidly manipulate and alter memory in a frame buffer.
- Present in : graphic card, tablet, recent smartphone, etc.

GPU API

- NVIDIA : CUDA.
- ATI : ATI Stream.
- Standard : OpenCL.

OpenCL platform model

- One host...
- ...connected to computing devices (for example GPU)...
- ...regrouping several computing units.
- For GPU : Single Instruction Multiple Data (SIMD).

High computing power but not for free :

- Parallelization constrained by SIMD programming model.
 - \Rightarrow same instruction computed by the computing units

OpenCL program

- Yanis LINGE, Cécile DUMAS, Sophie LAMBERT-LACROIX

C CEA. All rights reserved.

Example : Correlation Power Analysis (Brier et al. 2004)

N traces C_i associated to a model H_k(i) for each key hypothesis k
 The Pearson coefficient is computed for each instant x of the traces.

$$\rho(x)_{k} = \frac{N \sum_{i=1}^{N} C_{i}(x) \cdot H_{k}(i) - \sum_{i=1}^{N} C_{i}(x) \cdot \sum_{i=1}^{N} H_{k}(i)}{\sqrt{N \sum_{i=1}^{N} C_{i}(x)^{2} - \left(\sum_{i=1}^{N} C_{i}(x)\right)^{2}} \cdot \sqrt{N \sum_{i=1}^{N} H_{k}(i)^{2} - \left(\sum_{i=1}^{N} H_{k}(i)\right)^{2}}}$$

Three kernels :

Compute :
$$\sum_{i=1}^{N} H_k(i)$$
 and $\sum_{i=1}^{N} H_k(i)^2$
Compute : $\sum_{i=1}^{N} C_i(x)$, $\sum_{i=1}^{N} C_i(x)^2$ and $\sum_{i=1}^{N} C_i(x)H_k(i)$

Compute the Pearson coefficient for each k and each x

Comparisons of different implementations

Hardware : CPU : XEON X3430

- 4 cores
- clock speed : 2.4GHz
- ► cost : ≈ 200\$
- GPU : ENGTS450
 - 192 CUDA cores
 - clock speed : 0.78GHz
 - ► cost : ≈ 200\$

Results : order of magnitude

Algorithm	Sequential	OpenMP	OpenCL
CPA	Т	T/3	<i>T /</i> 12
$\frac{\text{Variance}}{\overline{C(x)^2} - \overline{C(x)}^2}$	T'	T'/3	<i>T'/</i> 12

Example : Rank Correlation (Batina et al. 2008)

- Same computation than the CPA but the values of $C_i(x)$ and $H_k(i)$ are replaced by their rank.
- Many sets of size N have to be sorted.
- SIMD not designed for conditional function and sorting.
 - \Rightarrow "only" 5 times faster than the sequential version.

- Yanis LINGE, Cécile DUMAS, Sophie LAMBERT-LACROIX

C CEA. All rights reserved.

Example : Rank Correlation (Batina et al. 2008)

- Same computation than the CPA but the values of $C_i(x)$ and $H_k(i)$ are replaced by their rank.
- Many sets of size N have to be sorted.
- SIMD not designed for conditional function and sorting.

 \Rightarrow "only" 5 times faster than the sequential version.

- Solution : Sorts by the CPU and the correlation computation by the GPU.
 - \Rightarrow 8 times faster than the sequential version.

Conclusion

- GPU usefull for SCA.
- Many algorithms from the Side Channel Analysis and from the Signal Processing.
 But not all of them.

 \Rightarrow It is important to respect SIMD concepts and correctly determine the parallelism in the algorithm.

 \Rightarrow Need for a prior analysis.

leti

LABORATOIRE D'ÉLECTRONIQUE ET DE TECHNOLOGIES DE L'INFORMATION

CEA-Leti MINATEC Campus, 17 rue des Martyrs 38054 GRENOBLE Cedex 9 Tel. +33 4 38 78 36 25

www.leti.fr

Thank you!

contact : yanis.linge@cea.fr

