

Fourth International Workshop on

Constructive Side-Channel Analysis and Secure Design (COSADE 2013)

Chosen-IV Correlation Power Analysis on KCipher-2 and a Countermeasure

Takafumi Hibiki^{*}, Naofumi Homma^{*}, Yuto Nakano[†], Kazuhide Fukushima[†], Shinsaku Kiyomoto[†], Yutaka Miyake[†], and Takafumi Aoki^{*} ^{*}Tohoku University, Japan [†]KDDI R&D Laboratories, Inc., Japan

ISO/IEC 18033-4 standard stream cipher

- High throughput for encryption/decryption and high security against theoretical attacks
 - Dynamic Feedback Control (DFC) mechanism
 - Two FSRs (Feedback Shift Registers) with
 - 32-bit word lengths similar to the SNOW2.0
 - Finite State Machine (FSM)
 - 32-bit integer addition
 - S-box and Permutation (S-box and Mixcolumns of AES)

Security evaluation against side-channel attacks has just begun

Side-channel attacks on KCipher-2

Power Analysis on KCipher-2 [Henricksen]

- Possibility of revealing only a 32-bit partial key out of 128-bit initial key
 - Previous study does not discuss any detailed attack scenario
- □ Complexity to reveal the entire initial key: 2⁹⁶
 - It seems not to be a real threat
- Our contribution
 - Chosen Initial-Vector (IV) CPA on KCipher-2
 - Complexity to reveal the entire initial key: 2³²
 - Countermeasure based on random masking
 - Resistant to the above attack

[Henricksen] M. Henricksen, ACISP2010.

Background

- KCipher-2
- Chosen-IV CPA on KCipher-2
- Countermeasure based on random masking
- Conclusions and future works

Input

- 128-bit Initial Key (IK)
- □ 128-bit Initial Vector (IV)
- Initialization process
 - Key loading step
 - Internal state initialization step (24 clock)
- Keystream output process
- □ 64-bit keystream/cycle

Input

- 128-bit Initial Key (IK)
- □ 128-bit Initial Vector (IV)
- Initialization process
 - Key loading step
 - Internal state initialization step (24 clock)
- Keystream output process
 - □ 64-bit keystream/cycle
- 32-bit integer addition 32-bit Sub function (S-box and Permutation)

Input

- 128-bit Initial Key (IK)
- □ 128-bit Initial Vector (IV)
- Initialization process
 - Key loading step

Internal state initialization step (24 clock)

- Keystream output process
 - □ 64-bit keystream/cycle
- 32-bit integer addition 32-bit Sub function (S-box and Permutation)

Outline of attack to recover 128-bit initial key

- Recover 128-bit initial key from three 32-bit internal keys with a 32-bit brute-force search
 - Proposed CPAs provides three 32-bit internal keys
 - Start by estimating the lowest byte for each 32-bit internal key
 - Use recovered bytes to estimate higher bytes sequentially
 - Complexity: 2^{10} (= $2^8 \times 4$)
 - With 96-bit internal keys revealed, 32-bit partial initial key is recovered by a 32-bit brute-force search

- Complexity: 2³²

- IV and O: 0 Known
- K (Internal key) Unknown
- I: Targetable
- : Untargetable

Internal state initialization step
Clock 0 (Initial state)
Initial vector (IV) and Internal key (K) are stored in FSRs

Registers (L1, L2, R1, R2) are set to be zero.

- : IV and 0:0 Known
- K (Internal key) Unknown
- **II**: Targetable
- : Untargetable

Internal state initialization step Clock 1

- Values given by only internal key or initial vector
- Untargetable values given by more than 64-bit internal keys

- : IV and 0:0 Known
- K (Internal key) Unknown
- **II**: Targetable
- : Untargetable

Internal state initialization step Clock 2

- Values given by only internal key or initial vector
- More untargetable values given by more than 64-bit internal keys

- : IV and 0:0 Known
- K (Internal key) Unknown
- I: Targetable
- : Untargetable

Internal state initialization step Clock 3

Targetable value given by initial vector and 32-bit internal key

□ Stored in Register L1

 $L1^{(3)} = Sub(IV + Sub(Sub(K)))$

- IV and O: 0 Known
- K (Internal key) Unknown
- I: Targetable
- : Untargetable

Internal state initialization step Clock 3

Targetable value given by initial vector and 32-bit internal key

□ Stored in Register L1

- : IV and 0:0 Known
- K (Internal key) Unknown
- I: Targetable
- C: Untargetable

Internal state initialization step Clock 4

Targetable value given by initial vector and 32-bit internal key

D Stored in Register L1

- IV and O: 0 Known
- K (Internal key) Unknown
- **II**: Targetable
- : Untargetable

Internal state initialization step Clock 4

- Targetable value given by initial vector and 32-bit internal key
 - □ Stored in Register L1

After Clock 4: Untargetable

Chosen-IV method to calculate each byte in L1

Each byte of internal key can be estimated by each byte in L1

- Depending > Difficulties
 - Carry propagation in integer addition

D Permutation

$$\mathbf{1}_0 = \mathbf{s}_0 \bigotimes (\mathbf{02})_{16} \oplus \mathbf{s}_1 \bigotimes (\mathbf{03})_{16} \oplus \mathbf{s}_2 \oplus \mathbf{s}_3$$

Chosen-IV method to calculate each byte in L1

Each byte of internal key can be estimated by each byte in L1

Difficulties

Carry propagation in integer addition

Permutation

 $|\mathbf{1}_0 = \mathbf{s}_0 \otimes (\mathbf{02})_{16} \oplus \mathbf{s}_1 \otimes (\mathbf{03})_{16} \oplus \mathbf{s}_2 \oplus \mathbf{s}_3$

Choose IV with zeros as all elements except for the byte of interest

Carry propagation does not occur

Output of Permutation can be approximated

 $I1_0 \simeq S_0 \otimes (02)_{16}$ gsis, tohoku university

Power model

Use 1-bit Hamming Weight model (HW)

It is difficult to use Hamming Distance model

 $-L1^{(2)}$ (= Sub (K + Sub(0))) is unknown constant value

1-bit HW model is equivalent to 1-bit HD model close to real power consumption

L1 ⁽²⁾	L1 ⁽³⁾	HD (L1 ⁽²⁾ , L1 ⁽³⁾) ≈ Real	HW (L1 ⁽³⁾)
0	0	P _{0→0} =0	$P_0 = 0$
0	1	P _{0→1} =1	P ₁ =1
1	0	P _{1→0} =1	P ₀ =0
1	1	P _{1→1} =0	P ₁ =1

Sign of correlation peak can be used for estimating the value of L1⁽²⁾

Estimation of keys

Chosen-IV CPAs at Clocks 3 and 4:

Key estimation by correlation peak and its sign

Estimation of keys

Chosen-IV CPAs at Clocks 3 and 4:

Key estimation by correlation peak and its sign

Estimation of keys

Chosen-IV CPAs at Clocks 3 and 4:

Key estimation by correlation peak and its sign

Experimental setup

KCipher-2 in FPGA (SASEBO-GII) Number of chosen IVs: 100,000 Clock frequency: 2.0 MHz Sampling rate: 200 MSample/s

SASEBO-GII

Clock 3 in initialization step

(a) Overview of setup (b) Power trace дзія, тоноки имічетятту Estimation result by correlation peak position

Key estimation by correlation peak evaluation of peak values by MTD*

> Successful estimation of the correct key from 10,000 power traces

*Measurements To Disclosure

Estimation result by sign of correlation peak

Correlations for the correct key obtained in the clock 3 CPA

Estimation result by sign of correlation peak

Correlations for the correct key obtained in the clock 3 CPA

Three 32-bit internal keys were successfully obtained

Countermeasure against proposed CPA

26

Countermeasure against proposed CPA

21

Countermeasure against proposed CPA

Countermeasure based on random masking

Countermeasure based on random masking

Masking of integer addition

Apply Golic's masked AND operation [Golic] to the masking of integer addition

D MUX-based masked AND (Λ ')

$$-X \wedge Y = (x \oplus mx) \wedge (y \oplus my)$$

= MUX(MUX(mx, X; my), MUX(X, mx; my); Y) = ($x \land y$) $\oplus mx$

– Unmask value given by a mask value *mx* or *my*

- Application to integer addition algorithms
 - Ripple Carry Adder (RCA)
 - -Kogge-Stone Adder (KSA)

[Golic] J. D. Golic, IEEE Trans., 2007

Masked S-box

- Additive masking [Oswald] for composite-field (Comp) structure
 - In GF(2²), additive mask value can be separable from the true output value
- Image: Multiplicative masking [Akkar] for table (TBL) structure
 - Multiplicative mask can be separable from the output of multiplicative inversion in GF(2⁸)

Permutation (P)

Unmask value is easily calculated on the fly by the duplication of this function

$$-P(x \oplus mx) = P(x) \oplus P(mx)$$

[Oswald] E. Oswald, FSE, 2005 [Akkar] M. Akkar, CHES, 2001

Evaluation of countermeasure

Estimation by correlation peaks

Results of proposed CPA

- Validity of proposed countermeasure was confirmed

Performance of our architecture evaluated in ASIC

Synopsys Design Compiler

TSMC 65nm LP standard cell library

	Adder	S-box	Delay [ns]	Area [µm²]
Without Counter- measure	RCA	Comp	6.50	30131
	KSA	TBL	2.27	56611
With Counter- measure	RCA	Comp	13.44	47930
	KSA	TBL	5.99	77621

Performance of our architecture evaluated in ASIC

Synopsys Design Compiler

TSMC 65nm LP standard cell library

	Adder	S-box	Delay [ns]	Area [µm ²]
Without Counter- measure	RCA	Comp	6.50	30131
	KSA	TBL	2.27	56611
With Counter- measure	RCA	Comp	13.44	47930
	KSA	TBL	5.99	77621

Area overhead : 60%

Performance of our architecture evaluated in ASIC

Synopsys Design Compiler

TSMC 65nm LP standard cell library

	Adder	S-box	Delay [ns]	Area [µm²]
Without Counter- measure	RCA	Comp	6.50	30131
	KSA	TBL	2.27	56611
With Counter- measure	RCA	Comp	13.44	47930
	KSA	TBL	5.99	77621

- Area overhead : 60%
- Delay overhead : 160%

The layout of ASIC implementation

TSMC 65nm LP standard cell library

Conclusions and future works

- Chosen-IV CPA on KCipher-2 to reveal the entire 128-bit initial key
- Masking-based countermeasure resistant to proposed CPA
 - □ Area overhead: 60%, Delay overhead: 160%

Future works

- Other types of side-channel attacks
 - Advanced analysis defeating conventional countermeasure [Mangard]
 - Fault analysis
- Attacks for other components
 - -Attacks for FSR-A, B

[Mangard] S. Mangard, CHES, 2005 GSIS, TOHOKU UNIVERSITY

Thank you for your kind attention