Using the Joint Distributions of a Cryptographic Function in Side Channel

Yanis LINGE ${ }^{1,2}$, Cécile DUMAS ${ }^{1}$, Sophie Lambert-Lacroix ${ }^{2}$

CEA-LETI/MINATEC
UJF-Grenoble 1 / CNRS / UPMF / TIMC-IMAG.

Introduction

Context: Side channel attacks on embedded software cryptographic algorithm.

Objective: Recovering information from traces.

Introduction

Context: Side channel attacks on embedded software cryptographic algorithm.

Objective: Recovering information from traces.

- without plaintext or ciphertext

Introduction

Context: Side channel attacks on embedded software cryptographic algorithm.

Objective: Recovering information from traces.

- without plaintext or ciphertext
- without profiling phase

The idea

The idea

Remarks:

- (a_{i}) and $\left(b_{i}\right)$ have not independent distributions.

Example: the couple (a, b) with $b=\operatorname{SB}(a)$ has impossible values.

The idea

Remarks:

- (a_{i}) and $\left(b_{i}\right)$ have not independent distributions.
- (a_{i}) and $\left(b_{i}\right)$ have a joint distribution that could depend on some key bits. Example: the couples $\left(a, b_{1}\right)$ with $b_{1}=\mathrm{SB}(a)$ and $\left(a, b_{2}\right)$ with $b_{2}=\mathrm{SB}(a \oplus 0 x f f)$ have different distributions.

The idea

Remarks:

- (a_{i}) and $\left(b_{i}\right)$ have not independent distributions.
- (a_{i}) and $\left(b_{i}\right)$ have a joint distribution that could depend on some key bits.
\Rightarrow Choice of a targeted function.
Example: $g(a, k)=\mathrm{SB}(a \oplus k)$

The attack principle

- Acquisitions of couples (leakage of a_{i}, leakage of b_{i}). \Rightarrow Empirical distribution S_{d}.
- Precomputations of theoretical distributions $S(g, k)$ of $\left(a_{i}, g\left(a_{i}, k\right)\right)$ for each possible key k.
- Comparison of S_{d} to each $S(g, k)$.
\Rightarrow The nearest determines the correct key value.

The attack principle

- Acquisitions of couples (leakage of a_{i}, leakage of b_{i}). \Rightarrow Empirical distribution S_{d}.
- Precomputations of theoretical distributions $S(g, k)$ of $\left(a_{i}, g\left(a_{i}, k\right)\right)$ for each possible key k.
- Comparison of S_{d} to each $S(g, k)$.
\Rightarrow The nearest determines the correct key value.

The problems

- How compare two distributions from an exact value a_{i} and the corresponding leakage $\varphi\left(a_{i}\right)$?

The problems

- How compare two distributions from an exact value a_{i} and the corresponding leakage $\varphi\left(a_{i}\right)$?
- How compare two distributions: a theoretical one (exact) and an empirical one (approximate)?

The problems

- How compare two distributions from an exact value a_{i} and the corresponding leakage $\varphi\left(a_{i}\right)$?
- How compare two distributions: a theoretical one (exact) and an empirical one (approximate)?
- How find the two instants (points of interest), how synchronize the signals, . . ?

The problems

- How compare two distributions from an exact value a_{i} and the corresponding leakage $\varphi\left(a_{i}\right)$?
- How compare two distributions: a theoretical one (exact) and an empirical one (approximate)?
- How find the two instants (points of interest), how synchronize the signals, . . .?

Compare an exact value to a leakage one

- Intermediate data a_{i} and b_{i} are reduced to a leakage model $\varphi\left(a_{i}\right)$ and $\varphi\left(b_{i}\right)$ (Hamming weigth, identity,...)

Compare an exact value to a leakage one

- Intermediate data a_{i} and b_{i} are reduced to a leakage model $\varphi\left(a_{i}\right)$ and $\varphi\left(b_{i}\right)$ (Hamming weigth, identity,...)
- Signal amplitudes are mapped to this leakage model too. Leakage estimation

Example: Classification method for a Hamming weight model of 4 bits:

HW value	number
0	1
1	4
2	6
3	4
4	1
Total	16

Compare two distributions

Notations:

- $p_{i j}$ is the probability $\varphi(a)=i$ and $\varphi(g(a, k))=j$
- $f_{i j}$ is the frequency of couple $\left(\varphi(a), \varphi\left(g\left(a, k^{\star}\right)\right)\right)=(i, j)$

Example the χ^{2} distance:

$$
\begin{gathered}
\chi^{2}\left(S(g, k), S_{d}\right)=\sum_{i} \sum_{j} \delta\left(p_{i j}, f_{i j}\right) \\
\delta\left(p_{i j}, f_{i j}\right)= \begin{cases}\frac{\left(p_{i j}-f_{i j}\right)^{2}}{p_{i j}} & , p_{i j} \neq 0 \\
0 & , p_{i j}=f_{i j} \\
\infty & , p_{i j}=0 \neq f_{i j}\end{cases}
\end{gathered}
$$

\Rightarrow The smallest distance between S_{d} and all the $S(g, k)$ reveals the correct key k.

But...

- Infinite distances when $p_{i j}=0$ and $f_{i j} \neq 0$
\Rightarrow Instability in presence of errors.

But...

- Infinite distances when $p_{i j}=0$ and $f_{i j} \neq 0$
\Rightarrow Instability in presence of errors.

Solution: Others distances from the paper:
S.-H. Cha. Comprehensive survey on distance/similarity measures between probability density functions. International Journal of Mathematical Models and Methods in Applied Sciences, 2007.

- Classical distances over \mathbb{R}^{n}
- Distances based on scalar product
- Distances based on Shannon entropy

Simulations

■ 100,000 simuled attacks

- Targeted function: $g(a, k)=\operatorname{SB}(a \oplus k)$
- Leakage model: Hamming weight of 8 bits
- Two kinds of error for the leakage estimation:
- small errors : correct value ± 1
- random errors : random value
- Chosen distance : 33 different distances

Simulations for different distances and 50\% small errors

Simulations for different distances and 50\% random errors

Best distances

- Pearson χ^{2} distance: $\sum_{i} \sum_{j} \frac{\left(p_{i j}-f_{i j}\right)^{2}}{f_{i j}}$
- Product scalar distance: $1-\sum_{i} \sum_{j} p_{i j} \cdot f_{i j}$

■Kullback-Leiber distance: $\sum_{i} \sum_{j} p_{i j} \cdot \ln \left(\frac{p_{i j}}{f_{i j}}\right)$

- Harmonic mean distance: $1-2 \sum_{i} \sum_{j} \frac{p_{i j} \cdot f_{i j}}{p_{i j}+f_{i j}}$
\Rightarrow With these distances the attack succeeds even in presence of errors.

Best distances

- Pearson χ^{2} distance: $\sum_{i} \sum_{j} \frac{\left(p_{i j}-f_{i j}\right)^{2}}{f_{i j}}$
- Product scalar distance: $1-\sum_{i} \sum_{j} p_{i j} \cdot f_{i j}$

■ Kullback-Leiber distance: $\sum_{i} \sum_{j} p_{i j} \cdot \ln \left(\frac{p_{i j}}{f_{i j}}\right)$
\square Harmonic mean distance: $1-2 \sum_{i} \sum_{j} \frac{p_{i j} \cdot f_{i j}}{p_{i j}+f_{i j}}$
\Rightarrow With these distances the attack succeeds even in presence of errors.
\Rightarrow The estimation may be approximative. No profiling phase is needed.

ATMega2561 : experimental conditions

- First round of a software AES-128
- Targeted function: $g(a, k)=\operatorname{SB}(a \oplus k)$
- Selection of the points of interest thanks to the variance
- Hamming weigth estimation by classification
- Chosen distance: Scalar product

ATMega2561: attack and results

- The attack is repeated on each pair of points of interest
- The first 16 results with the smaller distance

ATMega2561: attack and results

- The attack is repeated on each pair of points of interest
- The first 16 results with the smaller distance
- 4×4 instants with the higher variance:
- The top 16 reveals 3 key bytes
- No position information for these bytes: it remains $\approx 2^{107}$ keys to test
- The probability for randomly finding 3 bytes is less than 2^{-24}
- Time <1 second

ATMega2561: attack and results

- The attack is repeated on each pair of points of interest
- The first 16 results with the smaller distance
- 4×4 instants with the higher variance:
- The top 16 reveals 3 key bytes
- No position information for these bytes: it remains $\approx 2^{107}$ keys to test
- The probability for randomly finding 3 bytes is less than 2^{-24}
- Time <1 second
- 50×50 instants with the higher variance:
- The top 16 reveals 10 key bytes
- No position information for these bytes: it remains $\approx 2^{70}$ keys to test
- The probability for randomly finding 10 bytes is less than 2^{-80}
- Time <2 minutes

Conclusion

- Without the knowledge of the plaintext or the ciphertext
- Many cryptographic functions
- Good stability in case of weak leakage estimation
- Easy and fast
- Difficulty for identifying of the position of the recovered key bytes

Perspectives

- Improve the attack thanks to the next rounds
- Apply this attack to protected implementations
- Try others methods to model and/or estimate the leakage

■ Find others methods for points of interest detection without the knowledge of plaintext or ciphertext

101

LABORATOIRE D'ELECTRONIQUE

 ET DE TECHNOLOGIES DELINFORMATIONCEA-Leti
MINATEC Campus, 17 rue des Martyis 38054 GRENOBLE Cedex 9
Tel. +33438783625
www.leti.fr

Questions?

contact: linge.yanis@gmail.com

DPAContest V4: experimental conditions

- First round of a software AES-256 with a RSM countermeasure
- Traces with the same unknown offset i
- Targeted function: $g(a, k)=\mathrm{SB}\left(a \oplus k \oplus M_{i}\right) \oplus M_{i+1}$
- Selection of the points of interest thanks to the variance
- Hamming weigth estimation by classification
- Chosen distance: Scalar product

DPAContest V4: attack and results

- The attack is repeated on each pair of interest points
- Occurence number of the resulting key bytes
- Instants where the variance is 5 times the mean variance:
- 28,000 points of interest
- The top 16 for occurence numbers reveals 7 key bytes
- These bytes are well-ordered: it remains $\approx 2^{92}$ keys to test
- The probability for randomly finding these bytes is less than 2^{-40}
- Time: 5 days

