Improving Non-Profiled Attacks on Exponentiations Based on Clustering and Extracting Leakage from Multi-Channel High-Resolution EM Measurements

Robert Specht Johann Heyszl Martin Kleinsteuber^a Georg Sigl^a ,

^aTechnische Universität München, Munich, Germany

Motivation

- Asymmetric ciphers (e.g. ECC)
- Attackers only have single trace
- Profiling is often prevented
- How could attackers still exploit leakage in the best way?
- Will multiple probes help attackers?

Different Coils for EMA

Source: De Mulder et al. ^a

Simple EM measurements are roughly as good as current measurements

^a De Mulder, E.; Örs, S. B.; Preneel, B. & Verbauwhede, I. Differential power and electromagnetic attacks on a FPGA implementation of elliptic curve cryptosystems Comput. Electr. Eng., Pergamon Press, Inc., 2007, 33, 367-382

Improving Clustering-Based Non-Profiled Attacks | R. Specht | | 3

Different Coils for EMA

- Tiny coils
 - $\blacksquare \ \ \mathsf{Closer} \ \mathsf{to} \ \mathsf{circuit} \ \mathsf{parts} \to \mathsf{Better} \ \mathsf{SNR}$
 - Also: Location-dependent leakage of asymmetric crypto

Improving Clustering-Based Non-Profiled Attacks | R. Specht | | 4

Exponentiations in Asymmetric Ciphers Heyszl et al. 2012

- (Previous work)
- Typical algorithm structure in asymmetric crypto:

```
Input: Secret d = d_N d_{N-1} \dots d_2 d_1 with d_i \in \{0, 1\}
 1: for i = N downto 1 do
 2:
        if d_i = 1 then
 3.
            c \leftarrow c^2 + a
4:
            a \leftarrow c
5:
        else
       c \leftarrow c^2 + b
6:
 7:
            h \leftarrow c
8.
        end if
9: end for
```


- Iteration based algorithm: 1 Iteration = 1 Bit
- Similarities for the two values of d_i is what attackers may exploit
- Registers are spread over die (registers hold multiple bytes)
- Location-based information leakage from high-precision probe

Exponentiations in Asymmetric Ciphers Heyszl et al. 2012

- (Previous work)
- Typical algorithm structure in asymmetric crypto:

```
Input: Secret d = d_N d_{N-1} \dots d_2 d_1 with d_i \in \{0, 1\}
 1: for i = N downto 1 do
 2:
        if d_i = 1 then
 3.
           c \leftarrow c^2 + a
4:
           a \leftarrow c
5:
     else
    c \leftarrow c^2 + b
6:
 7:
           b \leftarrow c
8.
        end if
9: end for
```


- Iteration based algorithm: 1 Iteration = 1 Bit
- Similarities for the two values of *d_i* is what attackers may exploit
- Registers are spread over die (registers hold multiple bytes)
- Location-based information leakage from high-precision probe

Our Practical Investigation

- ECC (Elliptic Curve Cryptography) engine on FPGA
- Measurement setup with three probes on die
- No profiling for good positions
- Repeat measurements on 400 positions \rightarrow 400 tests
- 1. Analyse measurements of probes separately Improve algorithms
- 2. Compare single to combined probes outcome Evaluate advantage

Our Practical Investigation

- ECC (Elliptic Curve Cryptography) engine on FPGA
- Measurement setup with three probes on die
- No profiling for good positions
- Repeat measurements on 400 positions \rightarrow 400 tests
- 1. Analyse measurements of probes separately Improve algorithms
- 2. Compare single to combined probes outcome Evaluate advantage

Algorithmic Approach Overview over Attack Analysis

For each trace:

- 1. Cut trace into segments corresponding to one bit
- 2. Reduce amount of data
- 3. Perform cluster classification
- 4. Check how well the classification matches secret exponent

Algorithmic Approach (1) Split Trace into Segments

- 1 loop iteration = 1 segment = 1 bit
- Split whole measurement trace into segments
- Rearrange to matrix

Algorithmic Approach (2) Reduce Data Amount

- A lot of dimensions does not contain useful information \rightarrow Reduce
 - Ideally, reduced to leakage and remove noise?
 - Earlier, simple trace compression techniques were used in this context
- Principal component analysis (PCA)

Algorithmic Approach (2) Reduce Data Amount

- A lot of dimensions does not contain useful information \rightarrow Reduce
 - Ideally, reduced to leakage and remove noise?
 - Earlier, simple trace compression techniques were used in this context
- Principal component analysis (PCA)

Algorithmic Approach (2) Principal Component Analysis (PCA)

- PCA projects data to maximize variance
- Every PC is different projection
- Segments with length of about 63k

Algorithmic Approach (2) Principal Component Analysis (PCA)

- Example data from a measurement:
 - Some principal components contain useful information (PC 1)
 - Others only noise (PC 2)

Principle Component 1

Algorithmic Approach (3) Cluster Classification

Clustering means finding a "label" for the segments

Expectation-Maximization algorithm trains a Gaussian mixture model

- Data should consists of 2 Gaussian distributions
- Difficult to separate, because some "overlap"

Improving Clustering-Based Non-Profiled Attacks | R. Specht | | 12

Algorithmic Approach (3) Cluster Classification

Clustering means finding a "label" for the segments

Expectation-Maximization algorithm trains a Gaussian mixture model

- Data should consists of 2 Gaussian distributions
- Difficult to separate, because some "overlap"

Improving Clustering-Based Non-Profiled Attacks | R. Specht | | 12

Algorithmic Approach (4) Result Evaluation

- How well did the attack recover the secret?
- Success metric Brute Force Complexity
 - Estimates the number of bits, which an attacker must test to get the correct key
 - The lower the brute force complexity, the easier is the key to recover (E.g. < 32 bits is very easy)</p>
 - Ranges from 1 to 163 bits

Part I: Analyzing Probes Separately

- As first investigation, we analyzed every probe separately
- Every probe has been put on 400 positions \rightarrow 400 tests for each probe
- For each position and probe:
 - Analyze different components after PCA
 - Perform clustering
 - Calculate brute force complexity as result

Part I: Analyzing Probes Separately Selecting Principal Components

- We select only few principal components before clustering
 - Useful information concentrated on few principal components
 - remove noise
 - –> IF right ones are selected \rightarrow Difficult

• We found that selecting specific single principal components leads to best results

- We also tested using multiple ones, but this led to worse results average
- Only the topmost 20 components are useful
- For evaluation:

- Calculate the brute force complexity for each measurement position
- Count the number of tests (measurement positions) which led to each brute force complexity range (similar to histogram)

Part I: Analyzing Probes Separately Selecting Principal Components

- We select only few principal components before clustering
 - Useful information concentrated on few principal components
 - remove noise
 - –> IF right ones are selected \rightarrow Difficult
- We found that selecting specific single principal components leads to best results
 - We also tested using multiple ones, but this led to worse results average
 - Only the topmost 20 components are useful
- For evaluation:
- Calculate the brute force complexity for each measurement position
- Count the number of tests (measurement positions) which led to each brute force complexity range (similar to histogram)

Improving Clustering-Based Non-Profiled Attacks | R. Specht | | 15

Part I: Analyzing Probes Separately Results Probe 1 (250 µm)

- Only few tests (positions) led to low complexities:
 - 3 % of 400 measurement points below 32 bits when using component number 5
- First components do not contain much leakage, despite highest contained signal variance
 - Most leakage in components 5 to 7

Part I: Analyzing Probes Separately Results Probe 2 (150 µm)

Much better results than first probe:

56 % of 400 measurement points below 32 bits when using component number 4

Part I: Analyzing Probes Separately Results Probe 3 (100 µm)

- Again, only few tests (positions) led to low complexities:
 - 3 % of 400 measurement points below 32 bits when using component number 8
- This time in components 7-10

Part I: Analyzing Probes Separately Summary

- The 150 µm probe led to the best results
 - May be due to individual quality, little closer distance, or FPGA and design
- Selecting single principal components after PCA worked best for clustering
- \blacksquare Not the highest-ranked ones contain most leakage, but \approx the 3rd to 8th ones
- Comparison to previous method using same measurements (simple trace compression + k-means from Heyszl et al., 2012)
 - Clear improvement: 0 % of tests below 32 bits with previous method
- As expected: Profiled template attack still performs better

Part II: Combining Multiple Probes

- Available leakage is always limited and Profiling is prevented in many cases
- Goal of possible attackers
 - \blacksquare Use 3 probes instead of one \rightarrow Combine leakage
 - \blacksquare No need to know positions \rightarrow Test multiple positions at once

Part II: Combining Multiple Probes Concatenation after PCA

As before: Only selected principal components are combined

Improving Clustering-Based Non-Profiled Attacks \mid R. Specht \mid \mid 21

Part II: Combining Multiple Probes Concatenation after PCA

As before: Only selected principal components are combined

Improving Clustering-Based Non-Profiled Attacks | R. Specht | $\ |$ 22

Part II: Combining Multiple Probes Results from Combined 3 Probes

- Overall, more tests resulted in complexities < 163 bits
- But combination led to slightly worse results than best single probe:
 - 52 % instead of max. 56 % of 400 measurement points below 32 bits when using component number 4

Part II: Combining Multiple Probes Summary

- No actual improvement from combining multiple probes for clustering attack
 - Maybe the algorithms are still not perfect
- But: Profiled template attack showed improved results
 - Improvement from best single probe in 82 % of cases
 - 66 % instead of 62 % of 400 measurement points below 32 bits

Conclusions

- Algorithmic improvement for clustering-based, non-profiled attack against asymmetric crypto
 - Using PCA (which is also done in other SCAs)
 - Use selection strategy for single principal components
- No improvement from multiple probes in case of this non-profiled clustering attack
- But: Improvement observed in case of profiled template attack

