## Exploring the Resilience of Some Lightweight Ciphers Against Profiled Single Trace Attacks

#### Valentina Banciu Elisabeth Oswald Carolyn Whitnall

University of Bristol, Department of Computer Science Merchant Venturers Building, Woodland Road, BS8 1UB, Bristol, UK {valentina.banciu, elisabeth.oswald, carolyn.whitnall}@bristol.ac.uk

COSADE 2015

#### Contents

- Overview of Single Trace Attacks (STA)
- Overview of Ciphers
- Implementation and Results

STA are profiled attacks aimed at key recovery using a single trace. STA consist of two phases:

- extracting the side-channel information from traces (i.e., profiling)
- 2 exploiting the available leakage in order to recover the secret key

In this talk, we focus on the exploitation phase.

STA attacks:

- involve directly interpreting power consumption measurements
- 2 exploit key-dependent differences (patterns) within a trace

General assumptions:

- I precise knowledge about the targeted implementation
- (identical) training device available

'Classification' of STA attacks:

- Enumeration-based attacks
- Solver-aided attacks: ASCA, TASCA, Gröbner basis

In this talk, we focus on enumeration-based attacks.

STA attacks crucially rely on the ability to extract side-channel information from traces.

STA attacks crucially rely on the ability to extract side-channel information from traces.

Assume the 8-bit Hamming weight (HW) leakage model.

STA attacks crucially rely on the ability to extract side-channel information from traces.

Assume the 8-bit Hamming weight (HW) leakage model.

• If w = HW(v) (the HW of an intermediate value) is known, |PossibleValues(v)| =  $\binom{8}{w}$ 

STA attacks crucially rely on the ability to extract side-channel information from traces.

Assume the 8-bit Hamming weight (HW) leakage model.

- If w = HW(v) (the HW of an intermediate value) is known, |PossibleValues $(v)| = \binom{8}{w}$
- In practice, w ∈ S = {w<sub>1</sub>, w<sub>2</sub>, ... w<sub>s</sub>} (uncertainty about measurements due to noise) and thus |PossibleValues(v)| = ∑<sub>i</sub> (<sup>8</sup>/<sub>w</sub>)

STA attacks crucially rely on the ability to extract side-channel information from traces.

Assume the 8-bit Hamming weight (HW) leakage model.

- If w = HW(v) (the HW of an intermediate value) is known, |PossibleValues(v)| =  $\binom{8}{w}$
- ② In practice,  $w \in S = \{w_1, w_2, ..., w_s\}$  (uncertainty about measurements due to noise) and thus  $|PossibleValues(v)| = \sum_i {8 \choose w_i}$

In a nutshell:

- STA attacks target multiple intermediate values (i.e., subkeys)
- **②** leakage corresponding to each intermediate value is represented as a set (currently: |S| = 5)
- the attack closely follows the encryption function

Why these ciphers?

Why these ciphers?

- AES and PRESENT have been standardized KLEIN and LED share features with AES, respectively PRESENT
- Publicly available 8-bit implementations:
  - http://perso.uclouvain.be/fstandae/lightweight\_ciphers/
  - http://led.crypto.sg/software

Why these ciphers?

- AES and PRESENT have been standardized KLEIN and LED share features with AES, respectively PRESENT
- Publicly available 8-bit implementations:
  - http://perso.uclouvain.be/fstandae/lightweight\_ciphers/
  - http://led.crypto.sg/software

Why STA?

Why these ciphers?

- AES and PRESENT have been standardized KLEIN and LED share features with AES, respectively PRESENT
- Publicly available 8-bit implementations:
  - http://perso.uclouvain.be/fstandae/lightweight\_ciphers/
  - http://led.crypto.sg/software

Why STA?

- realistic attack scenario
- Probust attacks w.r.t. noise tolerance

**Overview of Ciphers** 

Table: Overview of cipher characteristics

|         | Kev size  | Block size | # rounds  | Existing key |  |  |
|---------|-----------|------------|-----------|--------------|--|--|
|         | 1109 0120 | BIOCK DIEC | // Foundo | schedule?    |  |  |
| AES     | 128       | 128        | 11        | yes          |  |  |
| KLEIN   | 64        | 64         | 12        | yes          |  |  |
| PRESENT | 80        | 64         | 32        | yes          |  |  |
| LED     | 64        | 64         | 8         | no           |  |  |

#### **Overview of Ciphers**



Figure: Overview of encryption algorithms

#### **Overview of Ciphers**



Figure: The first encryption round. The byte mixing layer acts on a 4-byte 'block'

Because of the diffusion properties of the byte-mixing layer, enumeration-based STA attacks target only the first encryption round.

Because of the diffusion properties of the byte-mixing layer, enumeration-based STA attacks target only the first encryption round.

The key addition and substitution layers can be attacked using pre-computed lookup tables, i.e. 1-byte subkeys. Let  $ByteSet_i$ , i = 1...4 be the key candidates that match the key addition and substitution leaks of a 'block'.

Because of the diffusion properties of the byte-mixing layer, enumeration-based STA attacks target only the first encryption round.

The key addition and substitution layers can be attacked using pre-computed lookup tables, i.e. 1-byte subkeys. Let  $ByteSet_i$ , i = 1...4 be the key candidates that match the key addition

and substitution leaks of a 'block'.

STA attacks boil down to targeting the byte mixing layer, i.e. 4-byte subkeys.

We have generated 100 plaintext and secret key pairs and simulated encryption and leakage using the cipher suite.

The reported results are averaged out over this set.

#### Algorithm 1 MixColumns (used by AES and KLEIN)

Input:  $in_1$ ,  $in_2$ ,  $in_3$ ,  $in_4$ Output:  $out_1$ ,  $out_2$ ,  $out_3$ ,  $out_4$ 1:  $Tmp \leftarrow in_1 \oplus in_2 \oplus in_3 \oplus in_4$ ; 2: for  $i = 1 \rightarrow 4$  do 3:  $Tm \leftarrow in_i \oplus in_{i+1}$ ; 4:  $Tm \leftarrow \texttt{xtime}(Tm)$ ; 5:  $out_i \leftarrow in_i \oplus Tm \oplus Tmp$ ; 6: end for

#### Algorithm 1 MixColumns (used by AES and KLEIN)

Input:  $in_1$ ,  $in_2$ ,  $in_3$ ,  $in_4$ Output:  $out_1$ ,  $out_2$ ,  $out_3$ ,  $out_4$ 1:  $Tmp \leftarrow in_1 \oplus in_2 \oplus in_3 \oplus in_4$ ; 2: for  $i = 1 \rightarrow 4$  do 3:  $Tm \leftarrow in_i \oplus in_{i+1}$ ; 4:  $Tm \leftarrow \texttt{xtime}(Tm)$ ; 5:  $out_i \leftarrow in_i \oplus Tm \oplus Tmp$ ; 6: end for

#### MixColumns will leak at most 17 intermediate values

pLayer will leak at most **12** intermediate values MixColumnsSerial will leak at most **32** intermediate values

pLayer will leak at most **12** intermediate values MixColumnsSerial will leak at most **32** intermediate values

Table: Size of the attack surface (i.e., number of leaked intermediate values) corresponding to the diffusion layer

|           | AES | KLEIN | PRESENT | LED |
|-----------|-----|-------|---------|-----|
| 'Basic'   | 4   | 4     | 4       | 4   |
| 'Maximum' | 21  | 21    | 12      | 32  |

#### **Algorithm 2** Previous attack strategy. 1: ReducedKeySpace = $\emptyset$ 2: for all $K_1 \in ByteSet_1$ do 3. for all $K_2 \in ByteSet_2$ do for all $K_3 \in ByteSet_3$ do 4 for all $K_4 \in ByteSet_4$ do 5: if $[K_1, K_2, K_3, K_4]$ matches the byte mixing leaks then 6: append $[K_1, K_2, K_3, K_4]$ to ReducedKeySpace 7: end if 8: end for 9: end for 10. 11: end for 12: end for 13: return *ReducedKeySpace*

#### Algorithm 2 Current attack strategy.

- 1:  $ReducedKeySpace = ByteSet_1 \times ByteSet_2 \times ByteSet_3 \times ByteSet_4$
- 2: filter out 'rows' that do not match the byte mixing leaks
- 3: return ReducedKeySpace

Why is the current attack strategy better?

Why is the current attack strategy better?

- In running time: under 5 minutes
- Success rate: 100%

#### Attacking the Encryption Round: Results

Table: Reduced key space when targeting the encryption function

|                   | HW model |                 |                 | HD model        |                 |    |                 |                 |                 |                 |
|-------------------|----------|-----------------|-----------------|-----------------|-----------------|----|-----------------|-----------------|-----------------|-----------------|
| Setsize<br>Cipher | 1        | 2               | 3               | 4               | 5               | 1  | 2               | 3               | 4               | 5               |
| AES               | 3        | 2 <sup>10</sup> | 2 <sup>20</sup> | 2 <sup>23</sup> | 2 <sup>25</sup> | 30 | 2 <sup>15</sup> | 2 <sup>22</sup> | 2 <sup>25</sup> | 2 <sup>26</sup> |
| KLEIN             | 3        | 2 <sup>9</sup>  | 2 <sup>12</sup> | 2 <sup>18</sup> | 2 <sup>23</sup> | 90 | 2 <sup>15</sup> | 2 <sup>22</sup> | 2 <sup>24</sup> | 2 <sup>26</sup> |
| PRESENT           | 23       | 211             | 2 <sup>19</sup> | 2 <sup>23</sup> | 2 <sup>25</sup> | 60 | 2 <sup>15</sup> | 2 <sup>22</sup> | 2 <sup>24</sup> | 2 <sup>25</sup> |
| LED               | 2        | 2 <sup>10</sup> | 2 <sup>18</sup> | 2 <sup>21</sup> | 2 <sup>24</sup> | 35 | 2 <sup>16</sup> | 2 <sup>21</sup> | 2 <sup>23</sup> | 2 <sup>25</sup> |

(a) Targeting the 'basic' attack surface

#### Attacking the Encryption Round: Results

Table: Reduced key space when targeting the encryption function



(a) Targeting the 'maximum' attack surface

The size of the reduced subkey space depends on:

- the set size
- Ithe number of statistically independent intermediates

and less so on the specific cipher particularities.

The key expansion algorithms are substantially different w.r.t. their diffusion properties.

- AES: target 1...5 consecutive round keys
- In KLEIN: target 1...12 (i.e., all) consecutive round keys
- PRESENT: target 32 (i.e., all) round keys (minimal differences between round keys)
- LED: no key expansion, uses the same key for all rounds

The key expansion algorithms are substantially different w.r.t. their diffusion properties.

- AES: target 1...5 consecutive round keys
- In KLEIN: target 1...12 (i.e., all) consecutive round keys
- PRESENT: target 32 (i.e., all) round keys (minimal differences between round keys)
- **(** LED: no key expansion, uses the same key for all rounds

Here, we only present the methodology for the KLEIN key expansion attack.

We report results for all ciphers. We are targeting the full key and no longer a 4-byte 'block'.



Figure: Targeting the KLEIN key expansion

It is possible to target 2-byte subkeys and use leakages from as many rounds as available.

Attacking the Key Expansion: Results

Table: Reduced key space when targeting the key expansion



(a) AES (128-bit key)

#### Attacking the Key Expansion: Results

Table: Reduced key space when targeting the key expansion



(a) KLEIN (64-bit key)

Attacking the Key Expansion: Results

Table: Reduced key space when targeting the key expansion



(a) PRESENT (80-bit key)

The attack outcome is influenced by:

- the set size
- 2 the number of statistically independent intermediates
- the diffusion rate

#### Conclusion

- We have compared various ciphers w.r.t. their vulnerability against profiled single trace attacks.
- **2** We found that mainly two factors influence the attack success:
  - ① the diffusion properties of a cipher
  - the number of intermediate values occur in a concrete implementation (i.e., the attack surface)
- Furthermore, particularly light key schedule algorithms are 'easy' targets

#### Conclusion

- We have compared various ciphers w.r.t. their vulnerability against profiled single trace attacks.
- **2** We found that mainly two factors influence the attack success:
  - the diffusion properties of a cipher
  - the number of intermediate values occur in a concrete implementation (i.e., the attack surface)
- Furthermore, particularly light key schedule algorithms are 'easy' targets

# Thank you for your attention!

#### Related Work

Attacks on the AES encryption round

- Valentina Banciu and Elisabeth Oswald. Pragmatism vs. Elegance: Comparing Two Approaches to Simple Power Attacks on AES. In COSADE, pages 29–40. Springer, 2014.
- Shize Guo, Xinjie Zhao, Fan Zhang, Tao Wang, Zhijie Jerry Shi, François-Xavier Standaert, and Chujiao Ma. Exploiting the Incomplete Diffusion Feature: A Specialized Analytical Side-Channel Attack Against the AES and Its Application to Microcontroller Implementations. IEEE Transactions on Information Forensics and Security, 9(6):999–1014, 2014.

#### Related Work

Attacks on the AES key schedule

- Stefan Mangard. A Simple Power-Analysis (SPA) Attack on Implementations of the AES Key Expansion. In ICISC 2002, pages 343–358. Springer, 2003.
- Joel VanLaven, Mark Brehob, and Kevin J Compton. A Computationally Feasible SPA Attack on AES via Optimized Search. In Security and Privacy in the Age of Ubiquitous Computing, pages 577–588. Springer, 2005.

Side-channel information extraction for STA

 Valentina Banciu, Elisabeth Oswald, and Carolyn Whitnall. Reliable Information Extraction for Single Trace Attacks. IACR ePrint Archive, 2015:45, 2015.