

Fault Injection with a new flavor: Memetic Algorithms make a difference

Stjepan Picek, Lejla Batina, Pieter Buzing, Domagoj Jakobovic

iCIS - Digital Security, Radboud University, The Netherlands

Faculty of Electrical Engineering and Computing, Zagreb, Croatia

Riscure BV, The Netherlands

14th April 2015

Introduction

Preliminaries

Approach and Methods

Experimental Results

Conclusions and Future Work

Introduction

- A fault injection (FI) attack is successful if after exposing the device to a specially crafted external interference, it shows an unexpected behavior exploitable by the attacker.
- Insertion of signals has to be precisely tuned for the fault injection to succeed.
- Finding the correct parameters for a successful FI can be considered as a search problem where one aims to find, within minimum time, the parameter configurations which result in a successful fault injection.
- The search space is typically too large to perform an exhaustive search.

- Use heuristics to find search space parameters that lead to successful attack.
- Use genetic algorithm (GA) and local search (LS), combine them into a memetic algorithm (MA).
- Conduct small number of measurements: 250 for every experiment.
- Perform voltage glitching.
- Two scenarios:

- Use heuristics to find search space parameters that lead to successful attack.
- Use genetic algorithm (GA) and local search (LS), combine them into a memetic algorithm (MA).
- Conduct small number of measurements: 250 for every experiment.
- Perform voltage glitching.
- Two scenarios:
 - Finding faults in minimal number of measurements.

- Use heuristics to find search space parameters that lead to successful attack.
- Use genetic algorithm (GA) and local search (LS), combine them into a memetic algorithm (MA).
- Conduct small number of measurements: 250 for every experiment.
- Perform voltage glitching.
- Two scenarios:
 - Finding faults in minimal number of measurements.
 - Characterizing the parameter space, again in a minimal number of measurements.

Smart card details

- Based on ATMega163+24C256 IC, realized in CMOS technology.
- Cards do not deploy any side-channel or fault injection countermeasure.
- We attack a vulnerable PIN authentication mechanism.
- Our approach makes no assumptions on the software that runs on the smart card.

Smart card details

```
for (i = 0; i < 4; i++)
{
    if (pin[i] == input[i])
        ok_digits++;
}
if (ok_digits == 4) //LOCATION FOR ATTACK
    respond_code(0x00, SW_NO_ERROR_msb, SW_NO_ERROR_lsb);
else
    respond_code(0x00, 0x69, 0x85);</pre>
```


Verdict classes

- FI testing equipment can output only verdict classes that correspond to successful measurements.
- Several possible classes for classifying a single measurement:
 - NORMAL: smart card behaves as expected and the glitch is ignored
 - **2** RESET: smart card resets as a result of the glitch
 - **3** MUTE: smart card stops all communication as a result of the glitch
 - INCONCLUSIVE: smart card responds in a way that cannot be classified in any other class
 - **5** SUCCESS: smart card response is a specific, predetermined value that does not happen under normal operation

Search space parameters

- We divide search space parameters into two groups.
- The first group consists of parameters that we influence with an external search space algorithm
- The second group consists of parameters that we leave for fault injection framework to set randomly.
- First group include:
 - Glitch length
 - Glitch voltage
 - Glitch offset
- Those parameters define the electrical effect on the target.
- Second group consists of wait cycles and number of glitch cycles parameters.

Approach

- Looking for spots that lead to the successful FI can be considered as an optimization problem.
- We want to find as much "good" spots as possible in the minimal amount of time.
- Recall, there are two scenarios of interest.
- The first one is finding as many successful parameter combinations as possible.
- In this scenario, we can expect that more attempts should be made with parameter values that resemble those that led to a fault.

- The second one aims to map the parameter space into regions with the same behavior outcome of the smart card.
- We expect that the parameter combinations that result in the same behavior form regions in the search space which are adjacent to regions with different target behavior.

Genetic algorithm

- GA belongs to a subclass of evolutionary algorithms where the elements of the search space are arrays of elementary types.
- We customize the standard version of GA:
 - Map verdict classes to fitness values.
 - Give higher values to verdict classes that are of a bigger importance.
 - For NORMAL class we give the value 1, RESET/MUTE and INCONCLUSIVE classes we consider the same and we give them a value 2, for SUCCESS class we give a value 3.
 - New operator: local crossover.

Genetic algorithm

Input: crx_count = 0, mut_count = 0

- 1: repeat
- 2: select first parent
- 3: if first parent of SUCCESS class then
- 4: try to find matching second parent
- 5: else
- 6: try to find second parent of different class
- 7: end if
- 8: perform crossover (depending on parent classes)
- 9: copy child to new generation

```
10: crx\_count = crx\_count + 1
```

11: until $p_c * N < crx_count$

12: repeat

- 13: select random individuals for tournament
- 14: copy best of tournament to new generation
- 15: $mut_count = mut_count + 1$
- 16: until $(1 p_c) * N < mut_count$
- 17: perform mutation on new generation with probability p_m
- 18: evaluate population

Tabu search

- There exist only a few different verdict classes.
- We do not want to test the same measurements more than once.
- We use a technique from Tabu Search (TS) optimization method.
- TS declare certain solution candidates that have already been visited as *tabu* and therefore not to be visited again.
- We do not use all functionalities from TS.

Local search

- Local search (LS) works on a single solution and generally transcend only to neighbors of the current solution.
- We use one version of the divide-and-conquer algorithm where each new solution is located in the middle of parent solutions (binary search).
- Define distance metrics:
 - Euclidean distance between two points \vec{a} and \vec{b} in an *n*-dimensional space is equals $d(\vec{a}, \vec{b}) = \sqrt{\sum_{i=1}^{n} (a_i - b_i)^2}$.
 - Manhattan distance between two points is the sum of absolute differences of their Cartesian coordinates and it equals $d(\vec{a}, \vec{b}) = \sum_{i=1}^{n} |a_i b_i|.$

First scenario

• Compare with random search and exhaustive search.

Figure: Exhaustive search, 7 500 measurements

First senario

- We conduct several runs of different algorithm versions and then we present averaged values.
- Columns Normal, Reset and Success show average number of NORMAL, RESET/MUTE and SUCCESS measurements.

Algorithm	Normal (%)	Reset (%)	Success (%)
GA+TS	58.08	39.97	1.94
GA+TS+LS, Euclidean	55.29	41.87	2.84
GA+TS+LS, Manhattan	62.76	36.45	0.78

Second scenario

- Here, we are not interested in SUCCESS points, we treat them as RESET/MUTE.
- We are looking for phase transitions.

-1000

Second scenario

Figure: GA + TS + LS, Manhattan

Figure: GA + TS + LS, Euclidean

• Our experiments with the MA show that one can successfully find faults with a limited number of measurements.

- Our experiments with the MA show that one can successfully find faults with a limited number of measurements.
- Additionally, we can characterize interesting search space regions.

- Our experiments with the MA show that one can successfully find faults with a limited number of measurements.
- Additionally, we can characterize interesting search space regions.
- We do not claim this is the best possible method for finding FI search space parameters.

• Explore more heuristics.

Future work

- Explore more heuristics.
- Compare with previous works.

- Explore more heuristics.
- Compare with previous works.
- Experiment with smart cards that have implemented countermeasures.

- Explore more heuristics.
- Compare with previous works.
- Experiment with smart cards that have implemented countermeasures.
- Apply it to other glitching scenarios, like EMFI.

Thank you for your attention.

Questions?