

DIFFERENTIAL FAULT INTENSITY ANALYSIS on PRESENT and LED Block Ciphers

Nahid Farhady Ghalaty, <u>Bilgiday Yuce</u>, Patrick Schaumont ECE Department Virginia Tech **COSADE 2015**

This research was supported through NSF Grant 1441710, Grant 1115839, and through SRC.

- 1. Fault Attack Requirements
- 2. Biased Faults
- 3. Exploiting Biased Faults:
 - Differential Fault Intensity Analysis (DFIA)
 - Results for PRESENT
- 4. Fault Injection Resolution and DFIA
- 5. Related Work
- 6. Conclusion

- Virginia Tech. In a nutshell
 - The basis of Differential Fault Intensity Analysis (DFIA) is biased (non-uniform) fault behavior.
 - DFIA provides a feasible (cheap, general) biased fault model.
 - DFIA works even we do not have high-capability fault injection equipment.

- Fault Attacks:
 - 1. Injecting faults in cipher's state
 - 2. Observing the effects of the fault
 - 3. Analyzing the effects to retrieve the key

- Fault analysis relies on fault model.
 - Fault model: Assumptions/Restrictions on the injected faults
- Attacker needs a feasible fault model.

- Differential Fault Intensity Analysis (DFIA):
 - 1. How can we obtain biased faults?
 - With low-cost setups
 - With applicability to any fault injection method
 - \Rightarrow A feasible fault model

- Differential Fault Intensity Analysis (DFIA):
 - 1. How can we tune the injected faults?
 - With low-cost setups
 - With applicability to any fault injection method
 ⇒ A feasible fault model
 - 2. How can we exploit the biased faults?
 - Using side-channel analysis approach
 - Similar to Differential Power Analysis (DPA)

- 1. Fault Attack Requirements
- 2. Biased Faults
- 3. Exploiting Biased Faults:
 - Differential Fault Intensity Analysis (DFIA)
 - Results for PRESENT
- 4. Fault Injection Resolution and DFIA
- 5. Related Work
- 6. Conclusion

• # of Faults vs. External Clock Frequency

Clock-glitching (Ghalaty et al. FDTC'14)

• # of Faults vs. EM Pulse Amplitude

Electromagnetic (EM) Pulses (Moro et al. FDTC'13)

Virginia Tech. Creating Biased Faults

- How can we inject biased faults?
 - By varying the fault intensity
- Fault Intensity:
 - The strength of the applied stress on the attacked device

Fault Injection Method	Fault Intensity	
Clock-glitching	Clock frequency	
EM Pulses	Pulse voltage	

Virginia Tech. Creating Biased Faults (cont.)

- How can we inject biased faults?
 - By varying the fault intensity
- Fault Intensity:
 - The strength of the applied stress on the attacked device

Fault Injection Method	Fault Intensity	
Clock-glitching	Clock frequency	
EM Pulses	Pulse voltage	

- Biased (Non-uniform) Fault Behavior:
 - Number of Faults ~ Fault Intensity
 - Small change in Fault Intensity → Small change in Faulty Value

• Setup Time Violation:

Virginia Tech. A Fault Mechanism (cont.)

• Setup Time Violation:

Virginia Tech. A Fault Mechanism (cont.)

• Setup Time Violation:

- 1. Fault Attack Requirements
- 2. Biased Faults
- 3. Exploiting Biased Faults:
 - Differential Fault Intensity Analysis (DFIA)
 - Results for PRESENT
- 4. Fault Injection Resolution and DFIA
- 5. Related Work
- 6. Conclusion

Virginia Tech. Differential Fault Intensity Analysis

- Differential Fault Intensity Analysis (DFIA):
 - Combines fault injection and DPA principles
 - Induces biased faults by varying the fault intensity
 - Applies a hypothesis test with biased faults
 - Uses biased faults as the source of leakage

Virginia Tech. DFIA – Biased Fault Injection

- Step 1: Biased Fault Injection
 - Apply Q different fault intensities $(f_{1,...,Q})$
 - Induce biased faults (S'_{1,...,Q})
 - Collect faulty ciphertexts (C'_{1,...,Q})

Virginia Tech. DFIA – Hypothesis Test

ENBEDDED SL PROVINCE OF THE SECOND

• Step 2: Hypothesis Test with Biased Faults

Given: C' and a KNOWN fault bias f **Find:** Most likely key nibble \tilde{K}

For all \widetilde{K} , find $\widetilde{S} = SBOX^{-1}(C' \oplus \widetilde{K})$ Accumulate $\rho_{\widetilde{K}} = \sum HD(\widetilde{S})$ Select K = argmin ρ

• Step 2: Example for PRESENT

Virginia Tech. DFIA – Hypothesis Test Example (cont.)

• Step 2: Example for PRESENT

Virginia Tech. DFIA – Hypothesis Test Example (cont.)

• Step 2: Example for PRESENT

- Nibble-serial and Round-serial Implementations:
 - Verilog RTL codes
 - Gate-level netlists for an Altera Cyclone IV FPGA
- Biased Fault Injection:
 - Clock Glitches
 - Gate-level (post-place-and-route) simulation

• PRESENT (and LED):

• Step size (resolution): 100ps

	# of Fault Intensity Levels(Q)		# of Glitched Clock Cycles	
	Nibble-Serial	Round-Serial	Nibble-Serial	Round-Serial
PRESENT-80	10	12	10× <mark>16</mark> =160	12× <mark>1</mark> =12
PRESENT-128	16	18	16× <mark>16</mark> =256	18× <mark>1</mark> =18

DFIA is FEASIBLE on PRESENT (and LED)

- 1. Fault Attack Requirements
- 2. Biased Faults
- 3. Exploiting Biased Faults:
 - Differential Fault Intensity Analysis (DFIA)
 - Results for PRESENT
- 4. Fault Injection Resolution and DFIA
- 5. Related Work
- 6. Conclusion

Virginia Tech. Fault Injection Resolution ~ Problem

- EthEDDED SL Condension of the second second
- Does DFIA work with low-resolution fault injection equipment?
 - Resolution: Minimum fault intensity step size
 - Some nibbles of the key cannot be fully retrieved if we use 1 plaintext.

Virginia Tech. Fault Injection Resolution ~ Solution

- DFIA still works with low-resolution fault injection equipment:
- Solution:
 - Repeat DFIA steps for different plaintexts $\{P_1, P_2, \dots, P_m\}$ until finding a unique key

- 1. Fault Attack Requirements
- 2. Biased Faults
- 3. Exploiting Biased Faults:
 - Differential Fault Intensity Analysis (DFIA)
 - Results for PRESENT
- 4. Fault Injection Resolution and DFIA
- 5. Related Work
- 6. Conclusion

e: uniform

S': non-uniform (some values occur more than others) C': non-uniform (some values occur more than others) e: non-uniform (some values occur more than others) S': non-uniform (some values occur more than others) C': no assumption

• DFIA does not make any assumptions on the biased value of faulty states or ciphertexts.

• DFIA provides a cheap and general methodology to control the induced faults.

- 1. Fault Attack Requirements
- 2. Biased Faults
- 3. Exploiting Biased Faults:
 - Differential Fault Intensity Analysis (DFIA)
 - Results for PRESENT
- 4. Fault Injection Resolution and DFIA
- 5. Related Work
- 6. Conclusion

- DFIA provides
 - a feasible (cheap, general) biased fault model
 - a DPA-like fault analysis methodology
- DFIA is feasible on LED and PRESENT.
- DFIA still works with lower-capability fault injection equipment.

