Faster Mask Conversion with Lookup Tables

Praveen Kumar Vadnala Johann Großschädl

. . .

University of Luxembourg

COSADE, 2015. Berlin, Germany.

Countermeasures

- Masking
 - Each sensitive variable is masked with a random value

- Security can be proved
- Higher-order masking

$$\begin{array}{rcl} x & \leftarrow & (x_1 \odot x_2 \odot \cdots \odot x_{d+1}) \\ (x_1, \cdots, x_d) & \leftarrow & \mathsf{rand}() \\ & & x_{d+1} & \leftarrow & x \odot x_1 \odot x_2 \odot \cdots \odot x_d \end{array}$$

- Masking
 - Each sensitive variable is masked with a random value

- Security can be proved
- Higher-order masking

$$\begin{array}{rcl} x & \leftarrow & (x_1 \odot x_2 \odot \cdots \odot x_{d+1}) \\ (x_1, \cdots, x_d) & \leftarrow & \mathsf{rand}() \\ & & x_{d+1} & \leftarrow & x \odot x_1 \odot x_2 \odot \cdots \odot x_d \end{array}$$

- Masking
 - Each sensitive variable is masked with a random value

- Security can be proved
- Higher-order masking

$$\begin{array}{rcl} x & \leftarrow & (x_1 \odot x_2 \odot \cdots \odot x_{d+1}) \\ (x_1, \cdots, x_d) & \leftarrow & \mathsf{rand}() \\ & & x_{d+1} & \leftarrow & x \odot x_1 \odot x_2 \odot \cdots \odot x_d \end{array}$$

- Masking
 - Each sensitive variable is masked with a random value

- Security can be proved
- Higher-order masking

$$\begin{array}{rcl} x & \leftarrow & (x_1 \odot x_2 \odot \cdots \odot x_{d+1}) \\ (x_1, \cdots, x_d) & \leftarrow & \mathsf{rand}() \\ & & x_{d+1} & \leftarrow & x \odot x_1 \odot x_2 \odot \cdots \odot x_d \end{array}$$

• Boolean masking

• Arithmetic masking

• Multiplicative masking $x : (x.r^{-1}, r)$

• Boolean masking

• Arithmetic masking

• Multiplicative masking $x : (x.r^{-1}, r)$

• Boolean masking

• Arithmetic masking

Multiplicative masking
x : (x.r⁻¹, r

• Boolean masking

• Arithmetic masking

• Multiplicative masking x : (x.r⁻¹, r)

Mask conversion

Conversion problem

- This talk : Conversion between arithmetic and Boolean masking
- Applications: IDEA, HMAC-SHA1, ARX based ciphers, GOST, ...
- Two approaches to find solution
 - Convert from one form to the other
 - Perform addition directly on Boolean shares

Mask conversion

Conversion problem

• This talk : Conversion between arithmetic and Boolean masking

• Applications: IDEA, HMAC-SHA1, ARX based ciphers, GOST, ...

• Two approaches to find solution

- Convert from one form to the other
- Perform addition directly on Boolean shares

- Conversion problem
- This talk : Conversion between arithmetic and Boolean masking
- Applications: IDEA, HMAC-SHA1, ARX based ciphers, GOST, ...
- Two approaches to find solution
 - Convert from one form to the other
 - Perform addition directly on Boolean shares

- Conversion problem
- This talk : Conversion between arithmetic and Boolean masking
- Applications: IDEA, HMAC-SHA1, ARX based ciphers, GOST, ...
- Two approaches to find solution
 - Convert from one form to the other
 - Perform addition directly on Boolean shares

- Conversion problem
- This talk : Conversion between arithmetic and Boolean masking
- Applications: IDEA, HMAC-SHA1, ARX based ciphers, GOST, ...
- Two approaches to find solution
 - Convert from one form to the other
 - Perform addition directly on Boolean shares

- Conversion problem
- This talk : Conversion between arithmetic and Boolean masking
- Applications: IDEA, HMAC-SHA1, ARX based ciphers, GOST, ...
- Two approaches to find solution
 - Convert from one form to the other
 - Perform addition directly on Boolean shares

- Several solutions exist for first-order secure conversion with varying complexity
- Coron-Großschädl-Vadnala higher-order conversion
 - Based on Ishai-Sahai-Wagner method
 - Requires 2t + 1 shares for *t*-th order security
- Vadnala-Großschädl second-order solution (LUT)
 - Based on generic second-order masking scheme by Prouff-Rivain
 - Needs only 3 shares for second-order security
 - Requires 2ⁿ LUT for *n*-bit conversion

- Several solutions exist for first-order secure conversion with varying complexity
- Coron-Großschädl-Vadnala higher-order conversion
 - Based on Ishai-Sahai-Wagner method
 - Requires 2t + 1 shares for *t*-th order security
- Vadnala-Großschädl second-order solution (LUT)
 - Based on generic second-order masking scheme by Prouff-Rivain
 - Needs only 3 shares for second-order security
 - Requires 2^n LUT for *n*-bit conversion

- Several solutions exist for first-order secure conversion with varying complexity
- Coron-Großschädl-Vadnala higher-order conversion
 - Based on Ishai-Sahai-Wagner method
 - Requires 2t + 1 shares for *t*-th order security
- Vadnala-Großschädl second-order solution (LUT)
 - Based on generic second-order masking scheme by Prouff-Rivain
 - Needs only 3 shares for second-order security
 - Requires 2ⁿ LUT for *n*-bit conversion

- Several solutions exist for first-order secure conversion with varying complexity
- Coron-Großschädl-Vadnala higher-order conversion
 - Based on Ishai-Sahai-Wagner method
 - Requires 2t + 1 shares for *t*-th order security
- Vadnala-Großschädl second-order solution (LUT)
 - Based on generic second-order masking scheme by Prouff-Rivain
 - Needs only 3 shares for second-order security
 - Requires 2ⁿ LUT for *n*-bit conversion

- Several solutions exist for first-order secure conversion with varying complexity
- Coron-Großschädl-Vadnala higher-order conversion
 - Based on Ishai-Sahai-Wagner method
 - Requires 2t + 1 shares for *t*-th order security
- Vadnala-Großschädl second-order solution (LUT)
 - Based on generic second-order masking scheme by Prouff-Rivain
 - Needs only 3 shares for second-order security
 - Requires 2ⁿ LUT for *n*-bit conversion

- Several solutions exist for first-order secure conversion with varying complexity
- Coron-Großschädl-Vadnala higher-order conversion
 - Based on Ishai-Sahai-Wagner method
 - Requires 2t + 1 shares for *t*-th order security
- Vadnala-Großschädl second-order solution (LUT)
 - Based on generic second-order masking scheme by Prouff-Rivain
 - Needs only 3 shares for second-order security
 - Requires 2^{*n*} LUT for *n*-bit conversion

- Several solutions exist for first-order secure conversion with varying complexity
- Coron-Großschädl-Vadnala higher-order conversion
 - Based on Ishai-Sahai-Wagner method
 - Requires 2t + 1 shares for *t*-th order security
- Vadnala-Großschädl second-order solution (LUT)
 - Based on generic second-order masking scheme by Prouff-Rivain
 - Needs only 3 shares for second-order security
 - Requires 2ⁿ LUT for *n*-bit conversion

- Several solutions exist for first-order secure conversion with varying complexity
- Coron-Großschädl-Vadnala higher-order conversion
 - Based on Ishai-Sahai-Wagner method
 - Requires 2t + 1 shares for *t*-th order security
- Vadnala-Großschädl second-order solution (LUT)
 - Based on generic second-order masking scheme by Prouff-Rivain
 - Needs only 3 shares for second-order security
 - Requires 2ⁿ LUT for *n*-bit conversion

• Improved algorithms for second-order conversion using LUT (3 shares)

- First-order secure addition (also using LUT)
- Over 85% improvement in execution time for second-order
- Application to HMAC-SHA-1 (k = 32)

- Improved algorithms for second-order conversion using LUT (3 shares)
- First-order secure addition (also using LUT)
- Over 85% improvement in execution time for second-order
- Application to HMAC-SHA-1 (k = 32)

- Improved algorithms for second-order conversion using LUT (3 shares)
- First-order secure addition (also using LUT)
- Over 85% improvement in execution time for second-order
- Application to HMAC-SHA-1 (k = 32)

- Improved algorithms for second-order conversion using LUT (3 shares)
- First-order secure addition (also using LUT)
- Over 85% improvement in execution time for second-order
- Application to HMAC-SHA-1 (k = 32)

- Input: $(x_1 = x \oplus x_1 \oplus x_2, x_2, x_3)$
- Output: $(y_1, y_2, S(x) \oplus y_1 \oplus y_2)$
- Randomizes the index $a' = a \oplus r \oplus x_2 \oplus x_3$ for $0 \le a \le 2^n 1$
- Shifts the table by y_1, y_2 in one step

- Input: $(x_1 = x \oplus x_1 \oplus x_2, x_2, x_3)$
- Output: $(y_1, y_2, S(x) \oplus y_1 \oplus y_2)$
- Randomizes the index $a' = a \oplus r \oplus x_2 \oplus x_3$ for $0 \le a \le 2^n 1$
- Shifts the table by y_1, y_2 in one step

- Input: $(x_1 = x \oplus x_1 \oplus x_2, x_2, x_3)$
- Output: $(y_1, y_2, S(x) \oplus y_1 \oplus y_2)$
- Randomizes the index $a' = a \oplus r \oplus x_2 \oplus x_3$ for $0 \le a \le 2^n 1$
- Shifts the table by y_1, y_2 in one step

$$r \in \{0, 1\}^n$$
 $r' = (r \oplus x_2) \oplus x_3$
 $y_1, y_2 \in \{0, 1\}^n$ $x = x_1 \oplus x_2 \oplus x_3$

 $T(a') = ((S(x_1 \oplus a) \oplus y_1) \oplus y_2)$ $a' = a \oplus r'$

$$r \in \{0, 1\}^n$$
 $r' = (r \oplus x_2) \oplus x_3$
 $y_1, y_2 \in \{0, 1\}^n$ $x = x_1 \oplus x_2 \oplus x_3$

$$a = x_2 \oplus x_3, a' = r$$

 $T(r) = S(x_1 \oplus x_2 \oplus x_3) \oplus y_1 \oplus y_2$

Algorithm 1 Sec2O-masking

Input: Three input shares: $(x_1 = x \oplus x_2 \oplus x_3, x_2, x_3) \in \mathbb{F}_{2^n}$, two output shares: $(y_1, y_2) \in \mathbb{F}_{2^m}$, and an (n, m) S-box lookup function S **Output:** Masked S-box output: $S(x) \oplus y_1 \oplus y_2$ 1: $r \leftarrow \text{Rand}(n)$ 2: $r' \leftarrow (r \oplus x_2) \oplus x_3$ 3: for a := 0 to $2^n - 1$ do 4: $a' \leftarrow a \oplus r'$ 5: $T[a'] \leftarrow ((S(x_1 \oplus a) \oplus y_1) \oplus y_2)$ 6: end for 7: return T[r]

Vadnala-Großschädl Scheme

Boolean to arithmetic conversion

- Input: $x_1 = x \oplus x_2 \oplus x_3, x_2, y_3$
- Output: $A_1 = x A_2 A_3, A_2, A_3$
- Generate A_2, A_3 randomly
- Compute $A_1 = x A_2 A_3$ using modified LUT

$$T(a') = (x_1 \oplus a) - A_2 - A_3$$

• Arithmetic to Boolean conversion is obtained in the same way

Vadnala-Großschädl Scheme

Boolean to arithmetic conversion

- Input: $x_1 = x \oplus x_2 \oplus x_3, x_2, y_3$
- Output: $A_1 = x A_2 A_3, A_2, A_3$
- Generate A_2, A_3 randomly
- Compute $A_1 = x A_2 A_3$ using modified LUT

$$T(a') = (x_1 \oplus a) - A_2 - A_3$$

• Arithmetic to Boolean conversion is obtained in the same way

Vadnala-Großschädl Scheme

Boolean to arithmetic conversion

- Input: $x_1 = x \oplus x_2 \oplus x_3, x_2, y_3$
- Output: $A_1 = x A_2 A_3, A_2, A_3$
- Generate A_2, A_3 randomly
- Compute $A_1 = x A_2 A_3$ using modified LUT

$$T(a')=(x_1\oplus a)-A_2-A_3$$

• Arithmetic to Boolean conversion is obtained in the same way

Vadnala-Großschädl Scheme

Boolean to arithmetic conversion

- Input: $x_1 = x \oplus x_2 \oplus x_3, x_2, y_3$
- Output: $A_1 = x A_2 A_3, A_2, A_3$
- Generate A_2, A_3 randomly
- Compute $A_1 = x A_2 A_3$ using modified LUT

$$T(a')=(x_1\oplus a)-A_2-A_3$$

• Arithmetic to Boolean conversion is obtained in the same way

Improved $B \rightarrow A$ conversion algorithm

• Use divide-and-conquer

- Divide each share into p parts of l bits each; $n = p \cdot l$
- Convert each part separately using previous approach
- Problem: Carries

Improved $B{\rightarrow}A$ conversion algorithm

- Use divide-and-conquer
- Divide each share into p parts of l bits each; $n = p \cdot l$
- Convert each part separately using previous approach
- Problem: Carries

Improved $B{\rightarrow}A$ conversion algorithm

- Use divide-and-conquer
- Divide each share into p parts of l bits each; $n = p \cdot l$
- Convert each part separately using previous approach
- Problem: Carries

Improved $B{\rightarrow}A$ conversion algorithm

- Use divide-and-conquer
- Divide each share into p parts of l bits each; $n = p \cdot l$
- Convert each part separately using previous approach
- Problem: Carries

• Original equation: $(A_1)^i = x^i - A_2 - A_3$ (The subtraction here are performed modulo 2^l instead of 2^n)

- New equation: $(A_1)^i = x^i c_1^i A_2 c_2^i A_3$
- Output carries of word $i \implies$ Input carries of word i + 1

• Original equation: $(A_1)^i = x^i - A_2 - A_3$ (The subtraction here are performed modulo 2^l instead of 2^n)

- New equation: $(A_1)^i = x^i c_1^i A_2 c_2^i A_3$
- Output carries of word $i \implies$ Input carries of word i + 1

• Original equation: $(A_1)^i = x^i - A_2 - A_3$ (The subtraction here are performed modulo 2^l instead of 2^n)

• New equation: $(A_1)^i = x^i - c_1^i - A_2 - c_2^i - A_3$

• Output carries of word $i \implies$ Input carries of word i + 1

• Original equation: $(A_1)^i = x^i - A_2 - A_3$ (The subtraction here are performed modulo 2^l instead of 2^n)

- New equation: $(A_1)^i = x^i c_1^i A_2 c_2^i A_3$
- Output carries of word $i \implies$ Input carries of word i+1

Computing carries

• New equation:
$$(A_1)^i = x^i - c_1^i - A_2 - c_2^i - A_3$$

 $(A_1)^i = \boxed{x^i - c_1^i - A_2} - c_2^i - A_3$
 $x^i - c_1^i - A_2$
 c_1^{i+1}

• Problem: Carries can still leak

- Solution: Apply generic countermeasure again
- Total of three LUTs

$$\begin{array}{rrrrr} T_1 & : & 2^{l+2} \cdot l & (A_1^i) \\ T_2 & : & 2^{l+2} \cdot 1 & (c_1^{i+1}) \\ T_3 & : & 2^{l+2} \cdot 1 & (c_2^{i+1}) \end{array}$$

- Problem: Carries can still leak
- Solution: Apply generic countermeasure again
- Total of three LUTs

$$\begin{array}{rrrrr} T_1 & : & 2^{l+2} \cdot l & (A_1^i) \\ T_2 & : & 2^{l+2} \cdot 1 & (c_1^{i+1}) \\ T_3 & : & 2^{l+2} \cdot 1 & (c_2^{i+1}) \end{array}$$

- Problem: Carries can still leak
- Solution: Apply generic countermeasure again
- Total of three LUTs

$$\begin{array}{rcl} T_1 & : & 2^{l+2} \cdot l & (A_1^i) \\ T_2 & : & 2^{l+2} \cdot 1 & (c_1^{i+1}) \\ T_3 & : & 2^{l+2} \cdot 1 & (c_2^{i+1}) \end{array}$$

- Problem: Carries can still leak
- Solution: Apply generic countermeasure again
- Total of three LUTs

Security Analysis

• For securing one word: Similar to Prouff-Rivian

- Every pair is independent of the sensitive variable
- For the full algorithm: Mathematical induction

Security Analysis

- For securing one word: Similar to Prouff-Rivian
- Every pair is independent of the sensitive variable
- For the full algorithm: Mathematical induction

Security Analysis

- For securing one word: Similar to Prouff-Rivian
- Every pair is independent of the sensitive variable
- For the full algorithm: Mathematical induction

Implementation results

Algorithm	l	Time	Memory	rand		
second-order conversion						
Algorithm $B \rightarrow A$	1	12186	8	226		
Algorithm B→A	2	11030	16	114		
Algorithm $B \rightarrow A$	4	19244	64	58		
Algorithm $A \rightarrow B$	1	10557	8	226		
Algorithm $A \rightarrow B$	2	9059	16	114		
Algorithm $A \rightarrow B$	4	15370	64	58		
$CGV \ A \to B$	-	54060	-	484		
$CGV \ B \to A$	-	81005	-	822		
first-order addition						
KRJ addition	-	371	-	1		
Our algorithm	4	294	512	3		

Table : Implementation results for n = 32 on a 32-bit microcontroller.

Implementation results

Application to HMAC-SHA-1

Algorithm	l	Time	PF		
HMAC-SHA-1	-	104	1		
second-order conversion					
Our solution	1	9715	95		
Our solution	2	8917	85		
Our solution	4	15329	147		
CGV	-	62051	596		
first-order addition					
KRJ addition	-	328	3.1		
Our solution	4	308	2.9		

 $\label{eq:Table:Running time in thousands of clock cycles and penalty factor compared to the unmasked HMAC-SHA-1 implementation$

Application to HMAC-SHA-1

- Improved algorithms for second-order conversion
- Requires only 3 shares and works for larger conversion size
- First-order masked addition using LUT
- Significant improvement (85%)in execution time for second-order conversion
- Alternative solution for first-order addition

- Improved algorithms for second-order conversion
- Requires only 3 shares and works for larger conversion size
- First-order masked addition using LUT
- Significant improvement (85%)in execution time for second-order conversion
- Alternative solution for first-order addition

- Improved algorithms for second-order conversion
- Requires only 3 shares and works for larger conversion size
- First-order masked addition using LUT
- Significant improvement (85%)in execution time for second-order conversion
- Alternative solution for first-order addition

- Improved algorithms for second-order conversion
- Requires only 3 shares and works for larger conversion size
- First-order masked addition using LUT
- Significant improvement (85%)in execution time for second-order conversion
- Alternative solution for first-order addition

- Improved algorithms for second-order conversion
- Requires only 3 shares and works for larger conversion size
- First-order masked addition using LUT
- Significant improvement (85%)in execution time for second-order conversion
- Alternative solution for first-order addition