Faster Mask Conversion with Lookup Tables

Praveen Kumar Vadnala Johann Großschädl
University of Luxembourg

COSADE, 2015. Berlin, Germany.

Masking

- Masking
- Each sensitive variable is masked with a random value

- Security can be proved
- Higher-order masking

Masking

- Masking
- Each sensitive variable is masked with a random value

- Security can be proved
- Higher-order masking

Masking

- Masking
- Each sensitive variable is masked with a random value

- Security can be proved
- Higher-order masking

Masking

- Masking
- Each sensitive variable is masked with a random value

- Security can be proved
- Higher-order masking

$$
\begin{aligned}
x & \leftarrow\left(x_{1} \odot x_{2} \odot \cdots \odot x_{d+1}\right) \\
\left(x_{1}, \cdots, x_{d}\right) & \leftarrow \operatorname{rand}() \\
x_{d+1} & \leftarrow x \odot x_{1} \odot x_{2} \odot \cdots \odot x_{d}
\end{aligned}
$$

Masking types

- Boolean masking

- Arithmetic masking

- Multiplicative masking

Masking types

- Boolean masking

- Arithmetic masking

- Multiplicative masking

Masking types

- Boolean masking

- Arithmetic masking

- Multiplicative masking

Masking types

- Boolean masking

- Arithmetic masking

- Multiplicative masking

$$
x:\left(x . r^{-1}, r\right)
$$

Mask conversion

- Conversion problem
- This talk: Conversion between arithmetic and Boolean masking
- Applications: IDEA, HMAC-SHA1, ARX based ciphers, GOST,
- Two approaches to find solution
- Convert from one form to the other
- Perform addition directly on Boolean shares

Mask conversion

- Conversion problem
- This talk: Conversion between arithmetic and Boolean masking
- Applications: IDEA, HMAC-SHA1, ARX based ciphers, GOST,
- Two approaches to find solution
- Convert from one form to the other
- Perform addition directly on Boolean shares

Mask conversion

- Conversion problem
- This talk: Conversion between arithmetic and Boolean masking
- Applications: IDEA, HMAC-SHA1, ARX based ciphers, GOST, ...
- Two approaches to find solution
- Convert from one form to the other
- Perform addition directly on Boolean shares

Mask conversion

- Conversion problem
- This talk: Conversion between arithmetic and Boolean masking
- Applications: IDEA, HMAC-SHA1, ARX based ciphers, GOST, ...
- Two approaches to find solution
- Convert from one form to the other
- Perform addition directly on Boolean shares

Mask conversion

- Conversion problem
- This talk: Conversion between arithmetic and Boolean masking
- Applications: IDEA, HMAC-SHA1, ARX based ciphers, GOST, ...
- Two approaches to find solution
- Convert from one form to the other
- Perform addition directly on Boolean shares

Mask conversion

- Conversion problem
- This talk: Conversion between arithmetic and Boolean masking
- Applications: IDEA, HMAC-SHA1, ARX based ciphers, GOST, ...
- Two approaches to find solution
- Convert from one form to the other
- Perform addition directly on Boolean shares

State of the art

- Several solutions exist for first-order secure conversion with varying complexity
- Coron-Großschädl-Vadnala higher-order conversion
- Based on Ishai-Sahai-Wagner method
- Requires $2 t+1$ shares for t-th order security
- Vadnala-Großschädl second-order solution (LUT)
- Based on generic second-order masking scheme by Prouff-Rivain
- Needs only 3 shares for second-order security
- Requires $2^{\text {n }}$ LUT for n-bit conversion

State of the art

- Several solutions exist for first-order secure conversion with varying complexity
- Coron-Großschädl-Vadnala higher-order conversion
- Based on Ishai-Sahai-Wagner method
- Requires $2 t+1$ shares for t-th order security
- Vadnala-Großschädl second-order solution (LUT)
- Based on generic second-order masking scheme by Prouff-Rivain
- Needs only 3 shares for second-order security
- Requires 2^{n} LUT for n-bit conversion

State of the art

- Several solutions exist for first-order secure conversion with varying complexity
- Coron-Großschädl-Vadnala higher-order conversion
- Based on Ishai-Sahai-Wagner method
- Requires $2 t+1$ shares for t-th order security
- Vadnala-Großschädl second-order solution (LUT)
- Based on generic second-order masking scheme by Prouff-Rivain
- Needs only 3 shares for second-order security
- Requires 2^{n} LUT for n-bit conversion

State of the art

- Several solutions exist for first-order secure conversion with varying complexity
- Coron-Großschädl-Vadnala higher-order conversion
- Based on Ishai-Sahai-Wagner method
- Requires $2 t+1$ shares for t-th order security
- Vadnala-Großschädl second-order solution (LUT)
- Based on generic second-order masking scheme by Prouff-Rivain
- Needs only 3 shares for second-order security
- Requires $2^{\text {n }}$ LUT for n-bit conversion

State of the art

- Several solutions exist for first-order secure conversion with varying complexity
- Coron-Großschädl-Vadnala higher-order conversion
- Based on Ishai-Sahai-Wagner method
- Requires $2 t+1$ shares for t-th order security
- Vadnala-Großschädl second-order solution (LUT)
- Based on generic second-order masking scheme by Prouff-Rivain
- Needs only 3 shares for second-order security
- Requires 2^{n} LUT for n-bit conversion

State of the art

- Several solutions exist for first-order secure conversion with varying complexity
- Coron-Großschädl-Vadnala higher-order conversion
- Based on Ishai-Sahai-Wagner method
- Requires $2 t+1$ shares for t-th order security
- Vadnala-Großschädl second-order solution (LUT)
- Based on generic second-order masking scheme by Prouff-Rivain
- Needs only 3 shares for second-order security
- Requires 2^{n} LUT for n-bit conversion

State of the art

- Several solutions exist for first-order secure conversion with varying complexity
- Coron-Großschädl-Vadnala higher-order conversion
- Based on Ishai-Sahai-Wagner method
- Requires $2 t+1$ shares for t-th order security
- Vadnala-Großschädl second-order solution (LUT)
- Based on generic second-order masking scheme by Prouff-Rivain
- Needs only 3 shares for second-order security

State of the art

- Several solutions exist for first-order secure conversion with varying complexity
- Coron-Großschädl-Vadnala higher-order conversion
- Based on Ishai-Sahai-Wagner method
- Requires $2 t+1$ shares for t-th order security
- Vadnala-Großschädl second-order solution (LUT)
- Based on generic second-order masking scheme by Prouff-Rivain
- Needs only 3 shares for second-order security
- Requires 2^{n} LUT for n-bit conversion

Our contributions

- Improved algorithms for second-order conversion using LUT (3 shares)
- First-order secure addition (also using LUT)
- Over 85% improvement in execution time for second-order
- Application to HMAC-SHA-1 $(k=32)$

Our contributions

- Improved algorithms for second-order conversion using LUT (3 shares)
- First-order secure addition (also using LUT)
- Over 85% improvement in execution time for second-order
- Application to HMAC-SHA-1 $(k=32)$

Our contributions

- Improved algorithms for second-order conversion using LUT (3 shares)
- First-order secure addition (also using LUT)
- Over 85% improvement in execution time for second-order
- Application to HMAC-SHA-1 $(k=32)$

Our contributions

- Improved algorithms for second-order conversion using LUT (3 shares)
- First-order secure addition (also using LUT)
- Over 85% improvement in execution time for second-order
- Application to HMAC-SHA-1 $(k=32)$

Generic 20-secure masking (Prouff-Rivain FSE, 2008)

- Input: $\left(x_{1}=x \oplus x_{1} \oplus x_{2}, x_{2}, x_{3}\right)$
- Output: $\left(y_{1}, y_{2}, S(x) \oplus y_{1} \oplus y_{2}\right)$
- Randomizes the index $a^{\prime}=a \oplus r \oplus x_{2} \oplus x_{3}$ for $0 \leq a \leq 2^{n}-1$
- Shifts the table by y_{1}, y_{2} in one step

Generic 20-secure masking (Prouff-Rivain FSE, 2008)

- Input: $\left(x_{1}=x \oplus x_{1} \oplus x_{2}, x_{2}, x_{3}\right)$
- Output: $\left(y_{1}, y_{2}, S(x) \oplus y_{1} \oplus y_{2}\right)$
- Randomizes the index $a^{\prime}=a \oplus r \oplus x_{2} \oplus x_{3}$ for $0 \leq a \leq 2^{n}-1$
- Shifts the table by y_{1}, y_{2} in one step

Generic 20-secure masking (Prouff-Rivain FSE, 2008)

- Input: $\left(x_{1}=x \oplus x_{1} \oplus x_{2}, x_{2}, x_{3}\right)$
- Output: $\left(y_{1}, y_{2}, S(x) \oplus y_{1} \oplus y_{2}\right)$
- Randomizes the index $a^{\prime}=a \oplus r \oplus x_{2} \oplus x_{3}$ for $0 \leq a \leq 2^{n}-1$
- Shifts the table by y_{1}, y_{2} in one step

Generic 20-secure masking (Prouff-Rivain FSE, 2008)

$$
\begin{array}{ll}
r \in\{0,1\}^{n} & r^{\prime}=\left(r \oplus x_{2}\right) \oplus x_{3} \\
y_{1}, y_{2} \in\{0,1\}^{n} & x=x_{1} \oplus x_{2} \oplus x_{3}
\end{array}
$$

$S(0)$
$S(1)$
\vdots
$S\left(2^{n}-1\right)$
\vdots
$S\left(x \oplus r \oplus 2^{n}-1\right) \oplus y_{1} \oplus y_{2}$

$$
\begin{aligned}
& T\left(a^{\prime}\right)=\left(\left(S\left(x_{1} \oplus a\right) \oplus y_{1}\right) \oplus y_{2}\right) \\
& a^{\prime}=a \oplus r^{\prime}
\end{aligned}
$$

Generic 20-secure masking (Prouff-Rivain FSE, 2008)

$$
\begin{array}{ll}
r \in\{0,1\}^{n} & r^{\prime}=\left(r \oplus x_{2}\right) \oplus x_{3} \\
y_{1}, y_{2} \in\{0,1\}^{n} & x=x_{1} \oplus x_{2} \oplus x_{3}
\end{array}
$$

$S(0)$
$S(1)$
\vdots
$S\left(x_{2} \oplus x_{3}\right)$
\vdots
$S\left(2^{n-1}\right)$
:---:

$$
\begin{gathered}
a=x_{2} \oplus x_{3}, a^{\prime}=r \\
T(r)=S\left(x_{1} \oplus x_{2} \oplus x_{3}\right) \oplus y_{1} \oplus y_{2}
\end{gathered}
$$

Generic 20-secure masking (Prouff-Rivain FSE, 2008)

Algorithm 1 Sec2O-masking

Input: Three input shares: $\left(x_{1}=x \oplus x_{2} \oplus x_{3}, x_{2}, x_{3}\right) \in \mathbb{F}_{2^{n}}$, two output shares: $\left(y_{1}, y_{2}\right) \in \mathbb{F}_{2^{m}}$, and an (n, m) S-box lookup function S
Output: Masked S-box output: $S(x) \oplus y_{1} \oplus y_{2}$
1: $r \leftarrow \operatorname{Rand}(n)$
2: $r^{\prime} \leftarrow\left(r \oplus x_{2}\right) \oplus x_{3}$
3: for $a:=0$ to $2^{n}-1$ do
4: $\quad a^{\prime} \leftarrow a \oplus r^{\prime}$
5: $\quad T\left[a^{\prime}\right] \leftarrow\left(\left(S\left(x_{1} \oplus a\right) \oplus y_{1}\right) \oplus y_{2}\right)$
6: end for
7: return $T[r]$

Vadnala-Großschädl Scheme

- Boolean to arithmetic conversion
- Input: $x_{1}=x \oplus x_{2} \oplus x_{3}, x_{2}, y_{3}$
- Output: $A_{1}=x-A_{2}-A_{3}, A_{2}, A_{3}$
- Generate A_{2}, A_{3} randomly
- Compute $A_{1}=x-A_{2}-A_{3}$ using modified LUT

$$
T\left(a^{\prime}\right)=\left(x_{1} \oplus a\right)-A_{2}-A_{3}
$$

- Arithmetic to Boolean conversion is obtained in the same way

Vadnala-Großschädl Scheme

- Boolean to arithmetic conversion
- Input: $x_{1}=x \oplus x_{2} \oplus x_{3}, x_{2}, y_{3}$
- Output: $A_{1}=x-A_{2}-A_{3}, A_{2}, A_{3}$
- Generate A_{2}, A_{3} randomly
- Compute $A_{1}=x-A_{2}-A_{3}$ using modified LUT

$$
T\left(a^{\prime}\right)=\left(x_{1} \oplus a\right)-A_{2}-A_{3}
$$

- Arithmetic to Boolean conversion is obtained in the same way

Vadnala-Großschädl Scheme

- Boolean to arithmetic conversion
- Input: $x_{1}=x \oplus x_{2} \oplus x_{3}, x_{2}, y_{3}$
- Output: $A_{1}=x-A_{2}-A_{3}, A_{2}, A_{3}$
- Generate A_{2}, A_{3} randomly
- Compute $A_{1}=x-A_{2}-A_{3}$ using modified LUT

$$
T\left(a^{\prime}\right)=\left(x_{1} \oplus a\right)-A_{2}-A_{3}
$$

- Arithmetic to Boolean conversion is obtained in the same way

Vadnala-Großschädl Scheme

- Boolean to arithmetic conversion
- Input: $x_{1}=x \oplus x_{2} \oplus x_{3}, x_{2}, y_{3}$
- Output: $A_{1}=x-A_{2}-A_{3}, A_{2}, A_{3}$
- Generate A_{2}, A_{3} randomly
- Compute $A_{1}=x-A_{2}-A_{3}$ using modified LUT

$$
T\left(a^{\prime}\right)=\left(x_{1} \oplus a\right)-A_{2}-A_{3}
$$

- Arithmetic to Boolean conversion is obtained in the same way

Improved $B \rightarrow A$ conversion algorithm

- Use divide-and-conquer
- Divide each share into p parts of $/$ bits each; $n=p$. $/$
- Convert each part separately using previous approach
- Problem: Carries

Improved $\mathrm{B} \rightarrow \mathrm{A}$ conversion algorithm

- Use divide-and-conquer
- Divide each share into p parts of I bits each; $n=p \cdot I$
- Convert each part separately using previous approach
- Problem: Carries

Improved $B \rightarrow A$ conversion algorithm

- Use divide-and-conquer
- Divide each share into p parts of I bits each; $n=p \cdot I$
- Convert each part separately using previous approach
- Problem: Carries

Improved $\mathrm{B} \rightarrow \mathrm{A}$ conversion algorithm

- Use divide-and-conquer
- Divide each share into p parts of I bits each; $n=p \cdot I$
- Convert each part separately using previous approach
- Problem: Carries

Handling carries

- Original equation: $\left(A_{1}\right)^{i}=x^{i}-A_{2}-A_{3}$ (The subtraction here are performed modulo 2^{l} instead of 2^{n})

- New equation: $\left(A_{1}\right)^{i}=x^{i}-c_{1}^{i}-A_{2}-c_{2}^{i}-A_{3}$
- Output carries of word $i \Longrightarrow$ Input carries of word $i+1$

Handling carries

- Original equation: $\left(A_{1}\right)^{i}=x^{i}-A_{2}-A_{3}$ (The subtraction here are performed modulo 2^{l} instead of 2^{n})

- New equation: $\left(A_{1}\right)^{i}=x^{i}-c_{1}^{i}-A_{2}-c_{2}^{i}-A_{3}$
- Output carries of word $i \Longrightarrow$ Input carries of word $i+1$

Handling carries

- Original equation: $\left(A_{1}\right)^{i}=x^{i}-A_{2}-A_{3}$ (The subtraction here are performed modulo 2^{\prime} instead of 2^{n})

- New equation: $\left(A_{1}\right)^{i}=x^{i}-c_{1}^{i}-A_{2}-c_{2}^{i}-A_{3}$
- Output carries of word $i \Longrightarrow$ Input carries of word $i+1$

Handling carries

- Original equation: $\left(A_{1}\right)^{i}=x^{i}-A_{2}-A_{3}$ (The subtraction here are performed modulo 2^{l} instead of 2^{n})

- New equation: $\left(A_{1}\right)^{i}=x^{i}-c_{1}^{i}-A_{2}-c_{2}^{i}-A_{3}$
- Output carries of word $i \Longrightarrow$ Input carries of word $i+1$

Computing carries

- New equation: $\left(A_{1}\right)^{i}=x^{i}-c_{1}^{i}-A_{2}-c_{2}^{i}-A_{3}$

Protecting carries

- Problem: Carries can still leak
- Solution: Apply generic countermeasure again
- Total of three LUTs

- Complexity: $\mathcal{O}\left(2^{1+2} \cdot p\right)$ (Earlier scheme: $\mathcal{O}\left(2^{\prime \cdot p}\right)$)

Protecting carries

- Problem: Carries can still leak
- Solution: Apply generic countermeasure again
- Total of three LUTs

- Complexity: $\mathcal{O}\left(2^{I+2} \cdot p\right)$ (Earlier scheme: $\mathcal{O}\left(2^{\prime \cdot p}\right)$)

Protecting carries

- Problem: Carries can still leak
- Solution: Apply generic countermeasure again
- Total of three LUTs

$$
\begin{array}{llll}
T_{1} & : & 2^{I+2} \cdot l & \left(A_{1}^{i}\right) \\
T_{2} & : & 2^{I+2} \cdot 1 & \left(c_{1}^{i+1}\right) \\
T_{3} & : & 2^{I+2} \cdot 1 & \left(c_{2}^{i+1}\right)
\end{array}
$$

- Complexity: $\mathcal{O}\left(2^{I+2} \cdot p\right)$ (Earlier scheme: $\mathcal{O}\left(2^{l \cdot p}\right)$)

Protecting carries

- Problem: Carries can still leak
- Solution: Apply generic countermeasure again
- Total of three LUTs

$$
\begin{array}{llll}
T_{1} & : & 2^{I+2} \cdot l & \left(A_{1}^{i}\right) \\
T_{2} & : & 2^{I+2} \cdot 1 & \left(c_{1}^{i+1}\right) \\
T_{3} & : & 2^{I+2} \cdot 1 & \left(c_{2}^{i+1}\right)
\end{array}
$$

- Complexity: $\mathcal{O}\left(2^{I+2} \cdot p\right)\left(\right.$ Earlier scheme: $\mathcal{O}\left(2^{I \cdot p}\right)$)

Security Analysis

- For securing one word: Similar to Prouff-Rivian
- Every pair is independent of the sensitive variable
- For the full algorithm: Mathematical induction

Security Analysis

- For securing one word: Similar to Prouff-Rivian
- Every pair is independent of the sensitive variable
- For the full algorithm: Mathematical induction

Security Analysis

- For securing one word: Similar to Prouff-Rivian
- Every pair is independent of the sensitive variable
- For the full algorithm: Mathematical induction

Implementation results

Algorithm		ℓ	Time	Memory	rand
second-order conversion					
Algorithm $\mathrm{B} \rightarrow \mathrm{A}$	1	12186	8	226	
Algorithm $\mathrm{B} \rightarrow \mathrm{A}$	2	11030	16	114	
Algorithm $\mathrm{B} \rightarrow \mathrm{A}$	4	19244	64	58	
Algorithm $\mathrm{A} \rightarrow \mathrm{B}$	1	10557	8	226	
Algorithm $\mathrm{A} \rightarrow \mathrm{B}$	2	9059	16	114	
Algorithm A $\rightarrow \mathrm{B}$	4	15370	64	58	
CGV $A \rightarrow B$	-	54060	-	484	
CGV $B \rightarrow A$	-	81005	-	822	
first-order addition					
KRJ addition	-	371	-	1	
Our algorithm	4	294	512	3	

Table: Implementation results for $n=32$ on a 32 -bit microcontroller.

Implementation results

Application to HMAC-SHA-1

Algorithm	ℓ	Time	PF
HMAC-SHA-1	-	104	1
second-order conversion			
Our solution	1	9715	95
Our solution	2	8917	85
Our solution	4	15329	147
CGV	-	62051	596
first-order addition			
KRJ addition	-	328	3.1
Our solution	4	308	2.9

Table : Running time in thousands of clock cycles and penalty factor compared to the unmasked HMAC-SHA-1 implementation

Application to HMAC-SHA-1

Conclusions

- Improved algorithms for second-order conversion
- Requires only 3 shares and works for larger conversion size
- First-order masked addition using LUT
- Significant improvement (85\%)in execution time for second-order conversion
- Alternative solution for first-order addition

Conclusions

- Improved algorithms for second-order conversion
- Requires only 3 shares and works for larger conversion size
- First-order masked addition using LUT
- Significant improvement (85\%)in execution time for second-order conversion
- Alternative solution for first-order addition

Conclusions

- Improved algorithms for second-order conversion
- Requires only 3 shares and works for larger conversion size
- First-order masked addition using LUT
- Significant improvement (85\%) in execution time for second-order conversion
- Alternative solution for first-order addition

Conclusions

- Improved algorithms for second-order conversion
- Requires only 3 shares and works for larger conversion size
- First-order masked addition using LUT
- Significant improvement (85\%)in execution time for second-order conversion
- Alternative solution for first-order addition

Conclusions

- Improved algorithms for second-order conversion
- Requires only 3 shares and works for larger conversion size
- First-order masked addition using LUT
- Significant improvement (85\%)in execution time for second-order conversion
- Alternative solution for first-order addition

