Algorithmic Approaches to Defeat Side Channel Analysis
Emmanuel PROUFF
ANSSI (French Network and Information Security Agency)

April 13, 2015

Probability distribution function (pdf) of Electromagnetic Emanations

$$
Z=S(X+k) \text { with } X=0 \text { and } k=1
$$

Probability distribution function (pdf) of Electromagnetic Emanations

$$
Z=S(X+k) \text { with } X=0 \text { and } k=2 .
$$

Probability distribution function (pdf) of Electromagnetic Emanations

$$
Z=S(X+k) \text { with } X=0 \text { and } k=3
$$

Probability distribution function (pdf) of Electromagnetic Emanations

$$
Z=S(X+k) \text { with } X=0 \text { and } k=4 .
$$

Probability distribution function (pdf) of Electromagnetic Emanations

$$
Z=S(X+k) \text { with } X=0 \text { and } k \in\{1,2,3,4\} .
$$

Introduction
Security Models| Constructions| New Construction| Conclusions And Perspectives|

Side Channel Attacks (SCA)

- Against each cryptosystem and each implementation, find the most efficient SCA.
- Efficiency of an SCA?
- Which attack parameters to improve?
- SCA common trends?
- Attacks versus Characterization!

Countermeasures

■ For each cryptosystem, find efficient/effective countermeasures.

- Formally define the fact that a countermeasure thwarts an SCA?
- Which countermeasure for which SCA?
- What makes a cryptosystem more vulnerable to SCA than another?

Introduction| Security Models Constructions| New Construction| Conclusions And Perspectives|
Need? Introduction| Adversary Game| Security| Probing Model| Information Model|
■ Do we need security proofs?

■ Do we need security proofs?

- Yes! Many ad hoc security analyses have been invalidated!
- e.g. GolicTymen02, AkkarBevanGoubin2004, FumaroliMayerDubois2007, CoronProuffRivain2007, ProuffMacEvoy2009, Debraize2012, etc.
- Do we need security proofs?

■ Yes! Many ad hoc security analyses have been invalidated!

- e.g. GolicTymen02, AkkarBevanGoubin2004, FumaroliMayerDubois2007, CoronProuffRivain2007, ProuffMacEvoy2009, Debraize2012, etc.

■ Are they sufficient?

- Do we need security proofs?

■ Yes! Many ad hoc security analyses have been invalidated!

- e.g. GolicTymen02, AkkarBevanGoubin2004, FumaroliMayerDubois2007, CoronProuffRivain2007, ProuffMacEvoy2009, Debraize2012, etc.
- Are they sufficient?

■ No! Practical Security \neq Theoretical Security!

- e.g. proofs may be wrong or incomplete
- or some physical phenomena are difficult to model (e.g. glitches)
- or artefacts in acquisition chain behaviour MoradiMische2013
- Do we need security proofs?

■ Yes! Many ad hoc security analyses have been invalidated!

- e.g. GolicTymen02, AkkarBevanGoubin2004, FumaroliMayerDubois2007, CoronProuffRivain2007, ProuffMacEvoy2009, Debraize2012, etc.
- Are they sufficient?

■ No! Practical Security \neq Theoretical Security!

- e.g. proofs may be wrong or incomplete
- or some physical phenomena are difficult to model (e.g. glitches)
- or artefacts in acquisition chain behaviour MoradiMische2013

An attempt to sum-up

- proofs help designers to achieve measurable security
- do not prevent evaluators to test theoretically-impossible attacks

Introduction| Security Models Constructions| New Construction| Conclusions And Perspectives|

[^0]- Main Remark: SCA efficiency depends on the amount of noise in the observation.
- Main Remark: SCA efficiency depends on the amount of noise in the observation.

$$
L=\varphi(Z)+\underbrace{\mathcal{N}}_{\text {Noise }}
$$

- Main Remark: SCA efficiency depends on the amount of noise in the observation.

$$
L=\varphi(Z)+\underbrace{\mathcal{N}}_{\text {Noise }}
$$

- Core Idea: define mechanisms to increase the noise.
- Main Remark: SCA efficiency depends on the amount of noise in the observation.

$$
L=\varphi(Z)+\underbrace{\mathcal{N}}_{\text {Noise }}
$$

■ Core Idea: define mechanisms to decrease the SNR.

- Main Remark: SCA efficiency depends on the amount of noise in the observation.

$$
L=\varphi(Z)+\underbrace{\mathcal{N}}_{\text {Noise }}
$$

■ Core Idea: define mechanisms to decrease the SNR.

- increase the noise variance.
- Main Remark: SCA efficiency depends on the amount of noise in the observation.

$$
L=\varphi(Z)+\underbrace{\mathcal{N}}_{\text {Noise }}
$$

■ Core Idea: define mechanisms to decrease the SNR.

- increase the noise variance.
- force the adversary to himself decrease the SNR.
- Main Remark: SCA efficiency depends on the amount of noise in the observation.

$$
L=\varphi(Z)+\underbrace{\mathcal{N}}_{\text {Noise }}
$$

■ Core Idea: define mechanisms to decrease the SNR.

- increase the noise variance.
- force the adversary to himself decrease the SNR.

■ Secret Sharing: randomly split Z into d shares Z_{1}, \ldots, Z_{d} :

$$
\begin{array}{llll}
Z_{1} & Z_{2} & \cdots & Z_{d}
\end{array}
$$

- Main Remark: SCA efficiency depends on the amount of noise in the observation.

$$
L=\varphi(Z)+\underbrace{\mathcal{N}}_{\text {Noise }}
$$

■ Core Idea: define mechanisms to decrease the SNR.

- increase the noise variance.
- force the adversary to himself decrease the SNR.

■ Secret Sharing: randomly split Z into d shares Z_{1}, \ldots, Z_{d} :

$$
L_{1}=\varphi\left(Z_{1}\right)+\mathcal{N}_{1} \quad L_{2}=\varphi\left(Z_{2}\right)+\mathcal{N}_{2} \quad \cdots \quad L_{d}=\varphi\left(Z_{d}\right)+\mathcal{N}_{d}
$$

- all the L_{i} are needed to get information on Z !
- hence the adversary must combine all the L_{i}
- lead to multiply the \mathcal{N}_{i} altogether and to merge information and noise in a complex way.

Adversary Game

In the implementation, find d or less intermediate variables that jointly depend on a secret variable Z.

Developer Game

Translate (Compile?) an implementation into a new one defeating the adversary.

Implementation $=$ sequence of elementary operations which read a memory location and write its result in another memory location.

Constructions| New Construction| Conclusions And Perspectives|
Need?| Introduction| Adversary Gamel Security Probing Model| Information Model|

An approach is to design cryptosystems secure in some leakage models.

An approach is to design cryptosystems secure in some leakage models.

- Recent interest from the crypto theory community (start with DziembowskiPietrzak2007).

An approach is to design cryptosystems secure in some leakage models.

- Recent interest from the crypto theory community (start with DziembowskiPietrzak2007).
- Proofs are given for some leakage models:
- Bounded Retrieval Model (BRM): the overall sensitive leakage is bounded.
- (continuous) Leakage-resilient cryptography (LRC): the leakage is limited for each invocation only.

An approach is to design cryptosystems secure in some leakage models.

- Recent interest from the crypto theory community (start with DziembowskiPietrzak2007).
- Proofs are given for some leakage models:
- Bounded Retrieval Model (BRM): the overall sensitive leakage is bounded.
- (continuous) Leakage-resilient cryptography (LRC): the leakage is limited for each invocation only.
- BRM primitives are insecure against DPA and its practical relevance is still under discussion.

An approach is to design cryptosystems secure in some leakage models.

- Recent interest from the crypto theory community (start with DziembowskiPietrzak2007).
- Proofs are given for some leakage models:
- Bounded Retrieval Model (BRM): the overall sensitive leakage is bounded.
- (continuous) Leakage-resilient cryptography (LRC): the leakage is limited for each invocation only.
- BRM primitives are insecure against DPA and its practical relevance is still under discussion.
- LRC primitives aims at DPA-security
- Based on re-keying techniques
- The kind of adversary captured by those models is too strong, which strongly impacts the efficiency.

An approach is to design cryptosystems secure in some leakage models.

- Recent interest from the crypto theory community (start with DziembowskiPietrzak2007).
- Proofs are given for some leakage models:
- Bounded Retrieval Model (BRM): the overall sensitive leakage is bounded.
- (continuous) Leakage-resilient cryptography (LRC): the leakage is limited for each invocation only.
- BRM primitives are insecure against DPA and its practical relevance is still under discussion.
- LRC primitives aims at DPA-security
- Based on re-keying techniques
- The kind of adversary captured by those models is too strong, which strongly impacts the efficiency.

Conclusion: need for another approach!

Constructions| New Construction| Conclusions And Perspectives|
Need?| Introduction| Adversary Gamel Security Probing Model| Information Model|

Secure implementations with secret sharing techniques.

Secure implementations with secret sharing techniques.
■ First Ideas in GoubinPatarin99 and ChariJutlaRaoRohatgi99.

Secure implementations with secret sharing techniques.
■ First Ideas in GoubinPatarin99 and ChariJutlaRaoRohatgi99.

- Soundness based on the following remark:
- Bit x masked $\mapsto x_{0}, x_{1}, \ldots, x_{d}$
- Leakage : $L_{i} \sim x_{i}+\mathcal{N}\left(\mu, \sigma^{2}\right)$
- The number of leakage samples to test

$$
\left(\left(L_{i}\right)_{i} \mid x=0\right) \stackrel{?}{=}\left(\left(L_{i}\right)_{i} \mid x=1\right) \text { is lower bounded by } O(1) \sigma^{d} .
$$

Secure implementations with secret sharing techniques.
■ First Ideas in GoubinPatarin99 and ChariJutlaRaoRohatgi99.

- Soundness based on the following remark:
- Bit x masked $\mapsto x_{0}, x_{1}, \ldots, x_{d}$
- Leakage : $L_{i} \sim x_{i}+\mathcal{N}\left(\mu, \sigma^{2}\right)$
- The number of leakage samples to test

$$
\left(\left(L_{i}\right)_{i} \mid x=0\right) \stackrel{?}{=}\left(\left(L_{i}\right)_{i} \mid x=1\right) \text { is lower bounded by } O(1) \sigma^{d} .
$$

- Until now, two options exist to prove the security:
- the probing Adversary model
- the Information Bounded model.

Secure implementations with secret sharing techniques.
■ First Ideas in GoubinPatarin99 and ChariJutlaRaoRohatgi99.

- Soundness based on the following remark:
- Bit x masked $\mapsto x_{0}, x_{1}, \ldots, x_{d}$
- Leakage : $L_{i} \sim x_{i}+\mathcal{N}\left(\mu, \sigma^{2}\right)$
- The number of leakage samples to test

$$
\left(\left(L_{i}\right)_{i} \mid x=0\right) \stackrel{?}{=}\left(\left(L_{i}\right)_{i} \mid x=1\right) \text { is lower bounded by } O(1) \sigma^{d} .
$$

- Until now, two options exist to prove the security:
- the probing Adversary model
- the Information Bounded model.
- The two models have been recently unified in

DucDziembowskiFaust14.

To prove the security of an implementation...

To prove the security of an implementation...

- for $d=1,2$: list all the intermediate variables and check that none of them is sensitive.

To prove the security of an implementation...

- for $d=1,2$: list all the intermediate variables and check that none of them is sensitive.
■ for $d \geq 3$: the method above is too costly!

To prove the security of an implementation...

- for $d=1,2$: list all the intermediate variables and check that none of them is sensitive.
- for $d \geq 3$: the method above is too costly!
- Issue: how to prove that a scheme can be made $d^{\text {th }}$-order secure for any given d ?

To prove the security of an implementation...
■ for $d=1,2$: list all the intermediate variables and check that none of them is sensitive.

- for $d \geq 3$: the method above is too costly!
- Issue: how to prove that a scheme can be made $d^{\text {th }}$-order secure for any given d ?
■ Ishai-Sahai-Wagner's approach:

To prove the security of an implementation...
■ for $d=1,2$: list all the intermediate variables and check that none of them is sensitive.

- for $d \geq 3$: the method above is too costly!
- Issue: how to prove that a scheme can be made $d^{\text {th }}$-order secure for any given d ?
■ Ishai-Sahai-Wagner's approach:
- Two players: the Adversary who can observe any d-tuple of intermediate results and an Oracle with no access to the implementation

To prove the security of an implementation...

- for $d=1,2$: list all the intermediate variables and check that none of them is sensitive.
- for $d \geq 3$: the method above is too costly!
- Issue: how to prove that a scheme can be made $d^{\text {th }}$-order secure for any given d ?
■ Ishai-Sahai-Wagner's approach:
- Two players: the Adversary who can observe any d-tuple of intermediate results and an Oracle with no access to the implementation
- The game: prove that, for any d-tuple, the oracle can simulate the adversary's view of the execution.

To prove the security of an implementation...
■ for $d=1,2$: list all the intermediate variables and check that none of them is sensitive.
■ for $d \geq 3$: the method above is too costly!

- Issue: how to prove that a scheme can be made $d^{\text {th }}$-order secure for any given d ?
■ Ishai-Sahai-Wagner's approach:
- Two players: the Adversary who can observe any d-tuple of intermediate results and an Oracle with no access to the implementation
- The game: prove that, for any d-tuple, the oracle can simulate the adversary's view of the execution.
■ Method works well for simple schemes (e.g. multiplications) BUT difficult to apply in general!

To prove the security of an implementation...
■ for $d=1,2$: list all the intermediate variables and check that none of them is sensitive.

- for $d \geq 3$: the method above is too costly!
- Issue: how to prove that a scheme can be made $d^{\text {th }}$-order secure for any given d ?
■ Ishai-Sahai-Wagner's approach:
- Two players: the Adversary who can observe any d-tuple of intermediate results and an Oracle with no access to the implementation
- The game: prove that, for any d-tuple, the oracle can simulate the adversary's view of the execution.
■ Method works well for simple schemes (e.g. multiplications) BUT difficult to apply in general!
- Recently Belaid, Fouque and Barthe developed automatic tools to generate security certificates.

Constructions|
New Construction| Conclusions

■ Implementation Model. Micali-Reyzin, TCC 2004

$$
\text { Implementation }=\begin{aligned}
& \text { seq. of elem. computations producing } \\
& \text { a list of interm. results }\left(Z_{i}\right)_{i} .
\end{aligned}
$$

■ Implementation Model. Micali-Reyzin, TCC 2004
Implementation $=$ seq. of elem. computations producing
Implementation $=$ a list of interm. results $\left(Z_{i}\right)_{i}$.

■ Leakage on Z_{i} modelled by a probabilistic function f_{i} s.t. $\operatorname{MI}\left(Z_{i} ; f_{i}\left(Z_{i}\right)\right) \leq O(1 / \psi)$,
where ψ is a security parameter depending on the noise.

■ Implementation Model. Micali-Reyzin, TCC 2004

$$
\text { Implementation }=\begin{aligned}
& \text { seq. of elem. computations producing } \\
& \text { a list of interm. results }\left(Z_{i}\right)_{i} .
\end{aligned}
$$

■ Leakage on Z_{i} modelled by a probabilistic function f_{i} s.t.

$$
\operatorname{MI}\left(Z_{i} ; f_{i}\left(Z_{i}\right)\right) \leq O(1 / \psi)
$$

where ψ is a security parameter depending on the noise.
■ Security Proof goal: find a deterministic function P s.t.:

$$
\operatorname{MI}\left((X, k) ;\left(f_{i}\left(Z_{i}\right)\right)_{i}\right) \leq P(1 / \psi)
$$

where X is the plaintext and k is the key.

■ First Issue: how to share sensitive data?

■ Second Issue: how to securely process on shared data?

- First Issue: how to share sensitive data?
- Related to:
- secret sharing Shamir79
- design of error correcting codes with large dual distance Massey93

■ Second Issue: how to securely process on shared data?

- Related to:
- secure multi-party computation NikovaRijmenSchläffer2008 ProuffRoche2011
- circuit processing in presence of leakage

GoldwasserRothblum2012

- efficient polynomial evaluation

CarletGoubinProuffQuisquater-
Rivain2012,CoronProuffRoche2012

- Linear Secret Sharing with parameters n and d :
- n elements Z_{i} such that

$$
Z=\sum_{i} Z_{i}
$$

- no sub-family of $d-1 Z_{i}$ depends on Z.

■ Linear Secret Sharing with parameters n and d :

- n elements Z_{i} such that

$$
Z=\sum_{i} Z_{i}
$$

- no sub-family of $d-1 Z_{i}$ depends on Z.

■ Massey (1993):

designing an (n, d) linear secret sharing

building a code with length $n+1$ and dual distance d

■ Linear Secret Sharing with parameters n and d :

- n elements Z_{i} such that

$$
Z=\sum_{i} Z_{i}
$$

- no sub-family of $d-1 Z_{i}$ depends on Z.

■ Massey (1993):

designing an (n, d) linear secret sharing

building a code with length $n+1$ and dual distance d

■ Yes, interesting, but ... who cares?

■ Linear Secret Sharing with parameters n and d :

- n elements Z_{i} such that

$$
Z=\sum_{i} Z_{i}
$$

- no sub-family of $d-1 Z_{i}$ depends on Z.

■ Massey (1993):

designing an (n, d) linear secret sharing

building a code with length $n+1$ and dual distance d

■ Yes, interesting, but ... who cares?

- gives a general framework to describe and analyse all linear sharing schemes

■ Linear Secret Sharing with parameters n and d :

- n elements Z_{i} such that

$$
Z=\sum_{i} Z_{i}
$$

- no sub-family of $d-1 Z_{i}$ depends on Z.

■ Massey (1993):

designing an (n, d) linear secret sharing

building a code with length $n+1$ and dual distance d

■ Yes, interesting, but ... who cares?

- gives a general framework to describe and analyse all linear sharing schemes
- links our problems with those of a rich community
- Linear Sharing = Encoding

$$
\left.\begin{array}{rl}
\left(\begin{array}{llll}
Z & R_{1} & \ldots & R_{k-1}
\end{array}\right) & \times\left(\begin{array}{ccccccc}
1 & 0 & 0 & 0 & \alpha_{1, k} & \ldots & \alpha_{1, n} \\
0 & 1 & 0 & 0 & \alpha_{2, k} & \ldots & \alpha_{2, n} \\
\vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & 1 & \alpha_{k, k} & \ldots & \alpha_{k, n}
\end{array}\right) \\
& =\left(\begin{array}{cccccc}
Z & Z_{1} & \ldots & Z_{k-1} & Z_{k} & \ldots
\end{array} Z_{n}\right.
\end{array}\right)
$$

- Linear Sharing = Encoding

- Linear Sharing = Encoding

$$
\begin{aligned}
\left(\begin{array}{llll}
Z & Z_{1} & \ldots & Z_{n}
\end{array}\right) & \times\left(\begin{array}{cccc}
\vec{H}_{1} & \vec{H}_{2} & \ldots & \vec{H}_{k}
\end{array}\right) \\
& =\left(\begin{array}{cccc}
0 & 0 & \ldots & 0
\end{array}\right)
\end{aligned}
$$

- Linear Sharing = Encoding

$$
\begin{aligned}
\left(\begin{array}{llll}
Z & Z_{1} & \ldots & Z_{n}
\end{array}\right) & \times\left(\begin{array}{cccc}
\vec{H}_{1} & \vec{H}_{2} & \ldots & \vec{H}_{k}
\end{array}\right) \\
& =\left(\begin{array}{ccccc}
0 & 0 & \ldots & 0
\end{array}\right)
\end{aligned}
$$

- implies for every $i \in[1 . . k]$:

$$
Z=H_{i 0}^{-1} \sum_{j=2}^{n} Z_{j} \times H_{i, j} .
$$

- Linear Sharing = Encoding

$$
\begin{aligned}
\left(\begin{array}{llll}
Z & Z_{1} & \ldots & Z_{n}
\end{array}\right) & \times\left(\begin{array}{cccc}
\vec{H}_{1} & \vec{H}_{2} & \ldots & \vec{H}_{k}
\end{array}\right) \\
& =\left(\begin{array}{cccc}
0 & 0 & \ldots & 0
\end{array}\right)
\end{aligned}
$$

- implies for every $i \in[1 . . k]$:

$$
Z=H_{i 0}^{-1} \sum_{j=2}^{n} Z_{j} \times H_{i, j} .
$$

- masking order $<\min _{i} \operatorname{HW}\left(\vec{H}_{i}\right)-1$
- Linear Sharing = Encoding

$$
\begin{aligned}
\left(\begin{array}{llll}
Z & Z_{1} & \ldots & Z_{n}
\end{array}\right) & \times\left(\begin{array}{cccc}
\vec{H}_{1} & \vec{H}_{2} & \ldots & \vec{H}_{k}
\end{array}\right) \\
& =\left(\begin{array}{cccc}
0 & 0 & \ldots & 0
\end{array}\right)
\end{aligned}
$$

■ implies for every $i \in[1 . . k]$:

$$
Z=H_{i 0}^{-1} \sum_{j=2}^{n} Z_{j} \times H_{i, j}
$$

- masking order $<\min _{i} \operatorname{HW}\left(\vec{H}_{i}\right)-1$
- Actually masking order $=\min _{\vec{H} \in C^{\perp}} \operatorname{HW}(\vec{H})-1$ Massey93
- Boolean Sharing: encoding with the matrix

$$
G=\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & 1 & 1
\end{array}\right)
$$

implies $k=n-1$.

■ Boolean Sharing: encoding with the matrix

$$
G=\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & 1 & 1
\end{array}\right)
$$

implies $k=n-1$.
■ Shamir's secret Sharing:

- generate a random degree- d polynomial $P(X)$ such that $P(0)=Z$
- build the Z_{i} such that $Z_{i}=P\left(\alpha_{i}\right)$ for $n \geq 2 d$ different public values α_{i}.

■ Boolean Sharing: encoding with the matrix

$$
G=\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & 1 & 1
\end{array}\right)
$$

implies $k=n-1$.
■ Shamir's secret Sharing:

- generate a random degree- d polynomial $P(X)$ such that $P(0)=Z$
- build the Z_{i} such that $Z_{i}=P\left(\alpha_{i}\right)$ for $n \geq 2 d$ different public values α_{i}.
■ ... amounts to define a Reed-Solomon code with parameters $[n+1, d+1, \cdot]$ McElieceSarwate81.

■ Boolean Sharing: encoding with the matrix

$$
G=\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & 1 & 1
\end{array}\right)
$$

implies $k=n-1$.

- Shamir's secret Sharing:
- generate a random degree- d polynomial $P(X)$ such that $P(0)=Z$
- build the Z_{i} such that $Z_{i}=P\left(\alpha_{i}\right)$ for $n \geq 2 d$ different public values α_{i}.
■ ... amounts to define a Reed-Solomon code with parameters $[n+1, d+1, \cdot]$ McElieceSarwate81.
- Main issue: minimize n for a given d.
Linear Sharing| Alternatives + And $\times \mid$ Other Method Threshold
- Multiplicative Masking Gollic2002, GenelleProuffQuisquater2010

$$
Z \mapsto Z_{0}, \ldots, Z_{d} \text { s.t. } Z_{i} \neq 0 \text { and } Z=Z_{0} \times \cdots \times Z_{d}
$$

■ Multiplicative Masking Gollic2002, GenelleProuffQuisquater2010

$$
Z \mapsto Z_{0}, \ldots, Z_{d} \text { s.t. } Z_{i} \neq 0 \text { and } Z=Z_{0} \times \cdots \times Z_{d}
$$

■ Affine Masking vonWillich2001, FumarolliMartinelliProuffRivain2010

$$
Z \mapsto Z_{0}, Z_{1}, Z_{2} \text { s.t. } Z_{1} \neq 0 \text { and } Z=\frac{Z_{0}}{Z_{1}}+Z_{2}
$$

■ Multiplicative Masking Gollic2002, GenelleProuffQuisquater2010

$$
Z \mapsto Z_{0}, \ldots, Z_{d} \text { s.t. } Z_{i} \neq 0 \text { and } Z=Z_{0} \times \cdots \times Z_{d}
$$

■ Affine Masking vonWillich2001, FumarolliMartinelliProuffRivain2010

$$
Z \mapsto Z_{0}, Z_{1}, Z_{2} \text { s.t. } Z_{1} \neq 0 \text { and } Z=\frac{Z_{0}}{Z_{1}}+Z_{2}
$$

■ Modular Additive Masking Coron1999

$$
Z \mapsto Z_{0}, Z_{1} \text { s.t. } Z=Z_{1}+Z_{2} \bmod \ldots
$$

■ Multiplicative Masking Gollic2002, GenelleProuffQuisquater2010

$$
Z \mapsto Z_{0}, \ldots, Z_{d} \text { s.t. } Z_{i} \neq 0 \text { and } Z=Z_{0} \times \cdots \times Z_{d}
$$

■ Affine Masking vonWillich2001, FumarolliMartinelliProuffRivain2010

$$
Z \mapsto Z_{0}, Z_{1}, Z_{2} \text { s.t. } Z_{1} \neq 0 \text { and } Z=\frac{Z_{0}}{Z_{1}}+Z_{2}
$$

■ Modular Additive Masking Coron1999

$$
Z \mapsto Z_{0}, Z_{1} \text { s.t. } Z=Z_{1}+Z_{2} \bmod \ldots
$$

- Homographic Masking CourtoisGoubin2005

$$
Z \mapsto \frac{Z_{0} \times Z+Z_{1}}{Z_{2} \times Z+Z_{3}} \text { or } \infty \text { if } Z=-\frac{Z_{3}}{Z_{2}} \text { or } \frac{Z_{0}}{Z_{2}} \text { if } Z=\infty
$$

New Construction| Conclusions And Perspectives|

- Leakage Squeezing

MaghrebiGuilleyDanger2011, CarletDangerGuilleyMaghrebi2014

$$
Z \mapsto Z_{0}, Z_{1} \text { s.t. } Z=Z_{0} \oplus Z_{1} \text { and } Z_{i} \in \mathcal{C}
$$

where \mathcal{C} is a code with dual distance d.

- Leakage Squeezing MaghrebiGuilleyDanger2011, CarletDangerGuilleyMaghrebi2014

$$
Z \mapsto Z_{0}, Z_{1} \text { s.t. } Z=Z_{0} \oplus Z_{1} \text { and } Z_{i} \in \mathcal{C}
$$

where \mathcal{C} is a code with dual distance d.

- Inner Product BalaschFaustGierlichsVerbauwhede2012 and

BalaschFaustGierlichs2015

$$
Z \mapsto \mathbf{L}, \mathbf{R} \in \mathrm{GF}\left(2^{n}\right)^{d} \text { s.t. } Z=\mathbf{L} \cdot \mathbf{R}
$$

■ Securing elementary Operations:

- Securing elementary Operations:

■ Original idea by Ishai-Sahai-Wagner: limited to GF(2)

- Securing elementary Operations:

■ Original idea by Ishai-Sahai-Wagner: limited to GF(2)
■ Extended to any field in RivainProuff2010 and
FaustRabinReyzin TromerVaikuntanathan2011

- Securing elementary Operations:

■ Original idea by Ishai-Sahai-Wagner: limited to GF(2)
■ Extended to any field in RivainProuff2010 and
FaustRabinReyzinTromerVaikuntanathan2011

- Based on Boolean Sharing: $Z=Z_{0} \oplus Z_{1} \oplus \ldots Z_{d}$
- Securing elementary Operations:
- Original idea by Ishai-Sahai-Wagner: limited to GF(2)

■ Extended to any field in RivainProuff2010 and
FaustRabinReyzinTromerVaikuntanathan2011

- Based on Boolean Sharing: $Z=Z_{0} \oplus Z_{1} \oplus \ldots Z_{d}$
- Securing linear functions L:

- Securing elementary Operations:
- Original idea by Ishai-Sahai-Wagner: limited to GF(2)

■ Extended to any field in RivainProuff2010 and
FaustRabinReyzin TromerVaikuntanathan2011

- Based on Boolean Sharing: $Z=Z_{0} \oplus Z_{1} \oplus \ldots Z_{d}$
- Securing linear functions L:

- Securing elementary Operations:
- Original idea by Ishai-Sahai-Wagner: limited to GF(2)

■ Extended to any field in RivainProuff2010 and
FaustRabinReyzin TromerVaikuntanathan2011

- Based on Boolean Sharing: $Z=Z_{0} \oplus Z_{1} \oplus \ldots Z_{d}$
- Securing linear functions L:

■ Much more difficult for non-linear functions (i.e. multiplication)

- Securing Multiplication IshaiSahaiWagner2003:
- Input: $\left(a_{i}\right)_{i},\left(b_{i}\right)_{i}$ s.t. $\bigoplus_{i} a_{i}=a, \bigoplus_{i} b_{i}=b$
- Output: $\left(c_{i}\right)_{i}$ s.t. $\bigoplus_{i} c_{i}=a b$
- Securing Multiplication IshaiSahaiWagner2003:
- Input: $\left(a_{i}\right)_{i},\left(b_{i}\right)_{i}$ s.t. $\bigoplus_{i} a_{i}=a, \bigoplus_{i} b_{i}=b$
- Output: $\left(c_{i}\right)_{i}$ s.t. $\bigoplus_{i} c_{i}=a b$

$$
\bigoplus_{i} c_{i}=\left(\bigoplus_{i} a_{i}\right)\left(\bigoplus_{i} b_{i}\right)=\bigoplus_{i, j} a_{i} b_{j}
$$

- Securing Multiplication IshaiSahaiWagner2003:
- Input: $\left(a_{i}\right)_{i},\left(b_{i}\right)_{i}$ s.t. $\bigoplus_{i} a_{i}=a, \bigoplus_{i} b_{i}=b$
- Output: $\left(c_{i}\right)_{i}$ s.t. $\bigoplus_{i} c_{i}=a b$

$$
\bigoplus_{i} c_{i}=\left(\bigoplus_{i} a_{i}\right)\left(\bigoplus_{i} b_{i}\right)=\bigoplus_{i, j} a_{i} b_{j}
$$

- Illustration of ISW scheme for $d=2$:

$$
\left(\begin{array}{ccc}
a_{0} b_{0} & a_{0} b_{1} & a_{0} b_{2} \\
a_{1} b_{0} & a_{1} b_{1} & a_{1} b_{2} \\
a_{2} b_{0} & a_{2} b_{1} & a_{2} b_{2}
\end{array}\right)
$$

■ Securing Multiplication IshaiSahaiWagner2003:

- Input: $\left(a_{i}\right)_{i},\left(b_{i}\right)_{i}$ s.t. $\bigoplus_{i} a_{i}=a, \bigoplus_{i} b_{i}=b$
- Output: $\left(c_{i}\right)_{i}$ s.t. $\bigoplus_{i} c_{i}=a b$

$$
\bigoplus_{i} c_{i}=\left(\bigoplus_{i} a_{i}\right)\left(\bigoplus_{i} b_{i}\right)=\bigoplus_{i, j} a_{i} b_{j}
$$

- Illustration of ISW scheme for $d=2$:

$$
\left(\begin{array}{ccc}
a_{0} b_{0} & a_{0} b_{1} & a_{0} b_{2} \\
a_{1} b_{0} & a_{1} b_{1} & a_{1} b_{2} \\
a_{2} b_{0} & a_{2} b_{1} & a_{2} b_{2}
\end{array}\right) \oplus\left(\begin{array}{lll}
r_{0,0} & r_{0,1} & r_{0,2} \\
r_{1,0} & r_{1,1} & r_{1,2} \\
r_{2,0} & r_{2,1} & r_{2,2}
\end{array}\right)
$$

where the $r_{i, j}$ are a $\left((d+1)^{2}, d\right)$-sharing of 0 .

- Securing Multiplication IshaiSahaiWagner2003:
- Input: $\left(a_{i}\right)_{i},\left(b_{i}\right)_{i}$ s.t. $\bigoplus_{i} a_{i}=a, \bigoplus_{i} b_{i}=b$
- Output: $\left(c_{i}\right)_{i}$ s.t. $\bigoplus_{i} c_{i}=a b$

$$
\bigoplus_{i} c_{i}=\left(\bigoplus_{i} a_{i}\right)\left(\bigoplus_{i} b_{i}\right)=\bigoplus_{i, j} a_{i} b_{j}
$$

- Illustration of ISW scheme for $d=2$:

$$
\left(\begin{array}{lll}
a_{0} b_{0} \oplus r_{0,0} & a_{0} b_{1} \oplus r_{0,1} & a_{0} b_{2} \oplus r_{0,2} \\
a_{1} b_{0} \oplus r_{1,0} & a_{1} b_{1} \oplus r_{1,1} & a_{1} b_{2} \oplus r_{1,2} \\
a_{2} b_{0} \oplus r_{2,0} & a_{2} b_{1} \oplus r_{2,1} & a_{2} b_{2} \oplus r_{2,2}
\end{array}\right)
$$

- Securing Multiplication IshaiSahaiWagner2003:
- Input: $\left(a_{i}\right)_{i},\left(b_{i}\right)_{i}$ s.t. $\bigoplus_{i} a_{i}=a, \bigoplus_{i} b_{i}=b$
- Output: $\left(c_{i}\right)_{i}$ s.t. $\bigoplus_{i} c_{i}=a b$

$$
\bigoplus_{i} c_{i}=\left(\bigoplus_{i} a_{i}\right)\left(\bigoplus_{i} b_{i}\right)=\bigoplus_{i, j} a_{i} b_{j}
$$

- Illustration of ISW scheme for $d=2$:

$$
\left(\begin{array}{lll}
a_{0} b_{0} \oplus r_{0,0} & a_{0} b_{1} \oplus r_{0,1} & a_{0} b_{2} \oplus r_{0,2} \\
a_{1} b_{0} \oplus r_{1,0} & a_{1} b_{1} \oplus r_{1,1} & a_{1} b_{2} \oplus r_{1,2} \\
a_{2} b_{0} \oplus r_{2,0} & a_{2} b_{1} \oplus r_{2,1} & a_{2} b_{2} \oplus r_{2,2}
\end{array}\right)
$$

- Securing Multiplication IshaiSahaiWagner2003:
- Input: $\left(a_{i}\right)_{i},\left(b_{i}\right)_{i}$ s.t. $\bigoplus_{i} a_{i}=a, \bigoplus_{i} b_{i}=b$
- Output: $\left(c_{i}\right)_{i}$ s.t. $\bigoplus_{i} c_{i}=a b$

$$
\bigoplus_{i} c_{i}=\left(\bigoplus_{i} a_{i}\right)\left(\bigoplus_{i} b_{i}\right)=\bigoplus_{i, j} a_{i} b_{j}
$$

- Illustration of ISW scheme for $d=2$:

$$
\left(\begin{array}{ccc}
a_{0} b_{0} \oplus r_{0,0} & a_{0} b_{1} \oplus r_{0,1} & a_{0} b_{2} \oplus r_{0,2} \\
a_{1} b_{0} \oplus r_{1,0} & a_{1} b_{1} \oplus r_{1,1} & a_{1} b_{2} \oplus r_{1,2} \\
a_{2} b_{0} \oplus r_{2,0} & a_{2} b_{1} \oplus r_{2,1} & a_{2} b_{2} \oplus r_{2,2}
\end{array}\right)
$$

- Securing Multiplication IshaiSahaiWagner2003:
- Input: $\left(a_{i}\right)_{i},\left(b_{i}\right)_{i}$ s.t. $\bigoplus_{i} a_{i}=a, \bigoplus_{i} b_{i}=b$
- Output: $\left(c_{i}\right)_{i}$ s.t. $\bigoplus_{i} c_{i}=a b$

$$
\bigoplus_{i} c_{i}=\left(\bigoplus_{i} a_{i}\right)\left(\bigoplus_{i} b_{i}\right)=\bigoplus_{i, j} a_{i} b_{j}
$$

- Illustration of ISW scheme for $d=2$:

$$
\left(\begin{array}{ccc}
a_{0} b_{0} \oplus r_{0,0} & a_{0} b_{1} \oplus r_{0,1} & a_{0} b_{2} \oplus r_{0,2} \\
a_{1} b_{0} \oplus r_{1,0} & a_{1} b_{1} \oplus r_{1,1} & a_{1} b_{2} \oplus r_{1,2} \\
a_{2} b_{0} \oplus r_{2,0} & a_{2} b_{1} \oplus r_{2,1} & a_{2} b_{2} \oplus r_{2,2}
\end{array}\right)
$$

■ Securing Multiplication IshaiSahaiWagner2003:

- Input: $\left(a_{i}\right)_{i},\left(b_{i}\right)_{i}$ s.t. $\bigoplus_{i} a_{i}=a, \bigoplus_{i} b_{i}=b$
- Output: $\left(c_{i}\right)_{i}$ s.t. $\bigoplus_{i} c_{i}=a b$

$$
\bigoplus_{i} c_{i}=\left(\bigoplus_{i} a_{i}\right)\left(\bigoplus_{i} b_{i}\right)=\bigoplus_{i, j} a_{i} b_{j}
$$

- Illustration of ISW scheme for $d=2$:

$$
\left(\begin{array}{ccc}
a_{0} b_{0} \oplus r_{0,0} & a_{0} b_{1} \oplus r_{0,1} & a_{0} b_{2} \oplus r_{0,2} \\
a_{1} b_{0} \oplus r_{1,0} & a_{1} b_{1} \oplus r_{1,1} & a_{1} b_{2} \oplus r_{1,2} \\
a_{2} b_{0} \oplus r_{2,0} & a_{2} b_{1} \oplus r_{2,1} & a_{2} b_{2} \oplus r_{2,2}
\end{array}\right)
$$

- Actually, we can do it with $(d+1)^{2} / 2$ random values instead of $(d+1)^{2}$.

Securing any Polynomial evaluation

- Write the s-box $\mathrm{S}:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$ as a polynomial function over $\operatorname{GF}\left(2^{n}\right)$:

$$
\mathrm{S}(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{2^{n}-1} x^{2^{n}-1}
$$

Securing any Polynomial evaluation
■ Write the s-box $\mathrm{S}:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$ as a polynomial function over GF (2^{n}):

$$
\mathrm{S}(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{2^{n}-1} x^{2^{n}-1}
$$

■ Four kinds of operations over $\mathrm{GF}\left(2^{n}\right)$:

1. additions
2. scalar multiplications (i.e. by constants)
3. squares
4. regular multiplications

Securing any Polynomial evaluation

- Write the s-box S : $\{0,1\}^{n} \rightarrow\{0,1\}^{m}$ as a polynomial function over $\operatorname{GF}\left(2^{n}\right)$:

$$
\mathrm{S}(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{2^{n}-1} x^{2^{n}-1}
$$

■ Four kinds of operations over $\mathrm{GF}\left(2^{n}\right)$:

1. additions
2. scalar multiplications (i.e. by constants)
3. squares
4. regular multiplications

■ Schemes with complexity $O(d)$ for the 3 first kinds

- $(x+y) \longrightarrow\left(x_{0}+y_{0}\right),\left(x_{1}+y_{1}\right), \cdots,\left(x_{d}+y_{d}\right)$
- $x^{2} \longrightarrow x_{0}^{2}, x_{1}^{2}, \cdots+x_{d}^{2}$
$\triangleright a \cdot x \longrightarrow a \cdot x_{0}, a \cdot x_{1}, \cdots, a \cdot x_{d}$

Securing any Polynomial evaluation

■ Write the s-box $\mathrm{S}:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$ as a polynomial function over $\operatorname{GF}\left(2^{n}\right)$:

$$
\mathrm{S}(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{2^{n}-1} x^{2^{n}-1}
$$

- Four kinds of operations over $\operatorname{GF}\left(2^{n}\right)$:

1. additions
2. scalar multiplications (i.e. by constants)
3. squares
4. regular multiplications \Rightarrow nonlinear multiplications

■ Schemes with complexity $O(d)$ for the 3 first kinds

- $(x+y) \longrightarrow\left(x_{0}+y_{0}\right),\left(x_{1}+y_{1}\right), \cdots,\left(x_{d}+y_{d}\right)$
- $x^{2} \longrightarrow x_{0}^{2}, x_{1}^{2}, \cdots+x_{d}^{2}$
- $a \cdot x \longrightarrow a \cdot x_{0}, a \cdot x_{1}, \cdots, a \cdot x_{d}$
- Schemes with complexity $O\left(d^{2}\right)$ for the non-linear multiplication IshaiSahaiWagner2004

Definition (CarletGoubinProuffQuisquaterRivain2012)

The masking complexity of S is the minimal number of non-linear multiplications needed for its evaluation.

Definition (CarletGoubinProuffQuisquaterRivain2012)

The masking complexity of S is the minimal number of non-linear multiplications needed for its evaluation.

Problematic 1: compute the masking complexity of any S (at least bounds).

Definition (CarletGoubinProuffQuisquaterRivain2012)

The masking complexity of S is the minimal number of non-linear multiplications needed for its evaluation.

Problematic 1: compute the masking complexity of any S (at least bounds).

Problematic 2: find evaluations methods efficient for the masking complexity criterion.

Definition (CarletGoubinProuffQuisquaterRivain2012)

The masking complexity of S is the minimal number of non-linear multiplications needed for its evaluation.

Problematic 1: compute the masking complexity of any S (at least bounds).

Problematic 2: find evaluations methods efficient for the masking complexity criterion.

For monomials: amounts to look for short 2-addition-chain exponentiations.

Definition (CarletGoubinProuffQuisquaterRivain2012)

The masking complexity of S is the minimal number of non-linear multiplications needed for its evaluation.

Problematic 1: compute the masking complexity of any S (at least bounds).

Problematic 2: find evaluations methods efficient for the masking complexity criterion.

For monomials: amounts to look for short 2-addition-chain exponentiations.

For polynomials: amounts to find efficient decompositions;
■ Knuth-Eve algorithm VonZurGathenNoker2003
■ or the Cyclotomic Method CarletGoubinProuffQuisquaterRivain2012
■ or Coron-Roy-Vivek's method CoronRoyVivek2014

Linear Sharing|
Linear Sharing| Alternatives $\mid+$ And $\times 1$ Other Method
Threshold|

- Idea: Mix additive with multiplicative masking defined on the same field.
- Idea: Mix additive with multiplicative masking defined on the same field.
- Recall (Additive masking):
$x \in \mathrm{GF}\left(2^{n}\right) \mapsto\left(x_{0}, \cdots x_{d}\right) \in \mathrm{GF}\left(2^{n}\right)^{d+1}$ s.t.

$$
\sum_{i} x_{i}=x
$$

- Idea: Mix additive with multiplicative masking defined on the same field.
- Recall (Additive masking):

$$
\begin{aligned}
x \in \mathrm{GF}\left(2^{n}\right) \mapsto\left(x_{0}, \cdots x_{d}\right) \in \mathrm{GF}\left(2^{n}\right)^{d+1} \text { s.t. } \\
\sum_{i} x_{i}=x
\end{aligned}
$$

- Recall (Multiplicative masking): $x \in \mathrm{GF}\left(2^{n}\right)^{*} \mapsto\left(x_{0}, \cdots x_{d}\right) \in \mathrm{GF}\left(2^{n}\right)^{* d+1}$ s.t.

$$
\prod x_{i}=x
$$

- Idea: Mix additive with multiplicative masking defined on the same field.
- Recall (Additive masking):

$$
\begin{aligned}
x \in \mathrm{GF}\left(2^{n}\right) \mapsto\left(x_{0}, \cdots x_{d}\right) \in \mathrm{GF}\left(2^{n}\right)^{d+1} \text { s.t. } \\
\sum_{i} x_{i}=x
\end{aligned}
$$

- Recall (Multiplicative masking): $x \in \mathrm{GF}\left(2^{n}\right)^{*} \mapsto\left(x_{0}, \cdots x_{d}\right) \in \mathrm{GF}\left(2^{n}\right)^{* d+1}$ s.t.

$$
\prod x_{i}=x
$$

■ So, use additive masking for affine transformations and multiplicative masking for power functions.

Linear Sharing|
Linear Sharing| Alternatives $\mid+$ And $\times 1$ Other Method
Threshold|

■ Issue 1: convert additive masking into multiplicative masking without leaking information in the d^{th}-order probing model?

■ Issue 1: convert additive masking into multiplicative masking without leaking information in the $d^{\text {th }}$-order probing model?

- Solution: conversions algorithms proposed in GenelleProuff Quisquater11 (complexity: d^{2} additions and $d(3+d) / 2$ multiplications).

■ Issue 1: convert additive masking into multiplicative masking without leaking information in the $d^{\text {th }}$-order probing model?

- Solution: conversions algorithms proposed in GenelleProuff Quisquater11 (complexity: d^{2} additions and $d(3+d) / 2$ multiplications).

■ Issue 2: multiplicative is only sound in the multiplicative group! How to deal with the 0 value problem?

- Issue 1: convert additive masking into multiplicative masking without leaking information in the $d^{\text {th }}$-order probing model?
- Solution: conversions algorithms proposed in GenelleProuff Quisquater11 (complexity: d^{2} additions and $d(3+d) / 2$ multiplications).
- Issue 2: multiplicative is only sound in the multiplicative group! How to deal with the 0 value problem?
- Solution: map the sharing of 0 into the sharing of 1 and keep trace of this modification for further correction.
- Amounts to secure the processing of the function

$$
x \mapsto x \oplus \delta_{0}(x) \text { with } \delta_{0}(x)=x_{0} \text { AND } x_{1} \text { AND } \ldots \text { AND } x_{n}
$$

- Issue 1: convert additive masking into multiplicative masking without leaking information in the $d^{\text {th }}$-order probing model?
- Solution: conversions algorithms proposed in GenelleProuff Quisquater11 (complexity: d^{2} additions and $d(3+d) / 2$ multiplications).

■ Issue 2: multiplicative is only sound in the multiplicative group! How to deal with the 0 value problem?

- Solution: map the sharing of 0 into the sharing of 1 and keep trace of this modification for further correction.
- Amounts to secure the processing of the function

$$
x \mapsto x \oplus \delta_{0}(x) \text { with } \delta_{0}(x)=x_{0} \text { AND } x_{1} \text { AND } \ldots \text { AND } x_{n}
$$

- Soundness: for any power e, we have

$$
\left(x \oplus \delta_{0}(x)\right)^{e}=x^{e} \oplus \delta_{0}(x)
$$

Additively masked

Multiplicatively masked

Introduction| Security Modelsl Constructions New Construction| Conclusions And Perspectivesl
from NikovaRijmenSchlaffer2008

New Construction| Conclusions And Perspectives|

from NikovaRijmenSchlaffer2008

Notation:

$$
S^{\star}\left(Z_{0}, \cdots, Z_{d}\right) \doteq S\left(\sum_{i} Z_{i}\right)=S(Z)
$$

from NikovaRijmenSchlaffer2008

Notation:

$$
S^{\star}\left(Z_{0}, \cdots, Z_{d}\right) \doteq S\left(\sum_{i} Z_{i}\right)=S(Z)
$$

Idea: find the smallest t s.t. there exist t indices subsets $I_{j} \subsetneq\{0, \ldots, d+1\}$ and t balanced functions S_{j} s.t.:

from NikovaRijmenSchlaffer2008

Notation:

$$
S^{\star}\left(Z_{0}, \cdots, Z_{d}\right) \doteq S\left(\sum_{i} Z_{i}\right)=S(Z)
$$

Idea: find the smallest t s.t. there exist t indices subsets $I_{j} \subsetneq\{0, \ldots, d+1\}$ and t balanced functions S_{j} s.t.: 1. [Completeness]

$$
S\left(Z_{0}, \cdots, Z_{d}\right)=\sum_{j} S_{j}\left(\left(Z_{i}\right)_{i \in I_{j}}\right)
$$

from NikovaRijmenSchlaffer2008

Notation:

$$
S^{\star}\left(Z_{0}, \cdots, Z_{d}\right) \doteq S\left(\sum_{i} Z_{i}\right)=S(Z)
$$

Idea: find the smallest t s.t. there exist t indices subsets $I_{j} \subsetneq\{0, \ldots, d+1\}$ and t balanced functions S_{j} s.t.: 1. [Completeness]

$$
S\left(Z_{0}, \cdots, Z_{d}\right)=\sum_{j} S_{j}\left(\left(Z_{i}\right)_{i \in I_{j}}\right)
$$

2. [Security] The t values $S_{0}\left(\left(Z_{i}\right)_{i \in I_{0}}\right), \ldots, S_{t-1}\left(\left(Z_{i}\right)_{i \in I_{t-1}}\right)$ form a t-sharing of $S(Z)$.

from NikovaRijmenSchlaffer2008

Notation:

$$
S^{\star}\left(Z_{0}, \cdots, Z_{d}\right) \doteq S\left(\sum_{i} Z_{i}\right)=S(Z)
$$

Idea: find the smallest t s.t. there exist t indices subsets $I_{j} \subsetneq\{0, \ldots, d+1\}$ and t balanced functions S_{j} s.t.: 1. [Completeness]

$$
S\left(Z_{0}, \cdots, Z_{d}\right)=\sum_{j} S_{j}\left(\left(Z_{i}\right)_{i \in I_{j}}\right)
$$

2. [Security] The t values $S_{0}\left(\left(Z_{i}\right)_{i \in I_{0}}\right), \ldots, S_{t-1}\left(\left(Z_{i}\right)_{i \in I_{t-1}}\right)$ form a t-sharing of $S(Z)$.

Recently extended to any order at Asiacrypt2014.
algebraic degree of a polynomial: greatest Hamming weight of the power of its monomials (with non-zero coefficients).
algebraic degree of a polynomial: greatest Hamming weight of the power of its monomials (with non-zero coefficients).

Secure Evaluation of a Polynomial $h(x)$ with algebraic degree s

$h(x)$ a polynomial with algebraic degree s

$$
h\left(\sum_{i=1}^{d} a_{i}\right)=\sum_{j \leq s} c_{j} \sum_{\substack{I \in[1, d] \\|\bar{I}|=j}} h\left(\sum_{i \in I} a_{i}\right),
$$

where c_{j} are constant binary coefficients.
algebraic degree of a polynomial: greatest Hamming weight of the power of its monomials (with non-zero coefficients).

Secure Evaluation of a Polynomial $h(x)$ with algebraic degree s

$h(x)$ a polynomial with algebraic degree s

$$
h\left(\sum_{i=1}^{d} a_{i}\right)=\sum_{j \leq s} c_{j} \sum_{\substack{I \in[1, d] \\|\bar{I}|=j}} h\left(\sum_{i \in I} a_{i}\right),
$$

where c_{j} are constant binary coefficients.
Hence: securing at order d reduces to securing at order s.
algebraic degree of a polynomial: greatest Hamming weight of the power of its monomials (with non-zero coefficients).

Secure Evaluation of a Polynomial $h(x)$ with algebraic degree s

$h(x)$ a polynomial with algebraic degree s

$$
h\left(\sum_{i=1}^{d} a_{i}\right)=\sum_{j \leq s} c_{j} \sum_{\substack{I \subseteq[1, d] \\|I|=j}} h\left(\sum_{i \in I} a_{i}\right)
$$

where c_{j} are constant binary coefficients.
Hence: securing at order d reduces to securing at order s. Leads to the secure evaluation methods with complexity $O\left(d^{s}\right)$.
algebraic degree of a polynomial: greatest Hamming weight of the power of its monomials (with non-zero coefficients).

Secure Evaluation of a Polynomial $h(x)$ with algebraic degree s

$h(x)$ a polynomial with algebraic degree s

$$
h\left(\sum_{i=1}^{d} a_{i}\right)=\sum_{j \leq s} c_{j} \sum_{\substack{I \in[1, d] \\|I|=j]}} h\left(\sum_{i \in I} a_{i}\right),
$$

where c_{j} are constant binary coefficients.
Hence: securing at order d reduces to securing at order s. Leads to the secure evaluation methods with complexity $O\left(d^{s}\right)$. Example: securing degree-2 functions is as complex as securing a multiplication (with ISW scheme).
algebraic degree of a polynomial: greatest Hamming weight of the power of its monomials (with non-zero coefficients).

Secure Evaluation of a Polynomial $h(x)$ with algebraic degree s

$h(x)$ a polynomial with algebraic degree s

$$
h\left(\sum_{i=1}^{d} a_{i}\right)=\sum_{j \leq s} c_{j} \sum_{\substack{I \in[1, d] \\|I|=j]}} h\left(\sum_{i \in I} a_{i}\right)
$$

where c_{j} are constant binary coefficients.
Hence: securing at order d reduces to securing at order s.
Leads to the secure evaluation methods with complexity $O\left(d^{s}\right)$.
Example: securing degree-2 functions is as complex as securing a multiplication (with ISW scheme).
Efficient (compared to SoA) for small s or $n \ll d^{s}$.

Extend CRV's method and exchange nonlinear multiplications for evaluations of degree- s functions (with s small).

Extend CRV's method and exchange nonlinear multiplications for evaluations of degree- s functions (with s small).

1. Randomly generate r degree- s polynomials f_{i}

Extend CRV's method and exchange nonlinear multiplications for evaluations of degree- s functions (with s small).

1. Randomly generate r degree- s polynomials f_{i}
2. Derive new polynomials $\left(g_{i}\right)_{i}$:

$$
\left\{\begin{array}{l}
g_{1}(x)=f_{1}(x) \\
g_{i}(x)=f_{i}\left(g_{i-1}(x)\right)
\end{array}\right.
$$

Extend CRV's method and exchange nonlinear multiplications for evaluations of degree- s functions (with s small).

1. Randomly generate r degree- s polynomials f_{i}
2. Derive new polynomials $\left(g_{i}\right)_{i}$:

$$
\left\{\begin{array}{l}
g_{1}(x)=f_{1}(x) \\
g_{i}(x)=f_{i}\left(g_{i-1}(x)\right)
\end{array}\right.
$$

3. Randomly generate t polynomials $\left(q_{i}\right)_{i}$ s.t.

$$
q_{i}(x)=\sum_{j=1}^{r} \ell_{i, j}\left(g_{j}(x)\right)+\ell_{i, 0}(x)
$$

where the ℓ_{j} are linearized polynomials.

Extend CRV's method and exchange nonlinear multiplications for evaluations of degree- s functions (with s small).

1. Randomly generate r degree- s polynomials f_{i}
2. Derive new polynomials $\left(g_{i}\right)_{i}$:

$$
\left\{\begin{array}{l}
g_{1}(x)=f_{1}(x) \\
g_{i}(x)=f_{i}\left(g_{i-1}(x)\right)
\end{array}\right.
$$

3. Randomly generate t polynomials $\left(q_{i}\right)_{i}$ s.t.

$$
q_{i}(x)=\sum_{j=1}^{r} \ell_{i, j}\left(g_{j}(x)\right)+\ell_{i, 0}(x)
$$

where the ℓ_{j} are linearized polynomials.
4. Find t polynomials p_{i} of algebraic degree s and for $r+1$ linearized polynomials ℓ_{i} such that

$$
S(x)=\sum_{i=1}^{t} p_{i}\left(q_{i}(x)\right)+\sum_{i=1}^{r} \ell_{i}\left(g_{i}(x)\right)+\ell_{0}(x) .
$$

■ The new method amounts to solve the linear system:

$$
\left\{\begin{array}{l}
\sum_{i=1}^{t} p_{i}\left(q_{i}\left(e_{1}\right)\right)+\sum_{i=1}^{r} \ell_{i}\left(g_{i}\left(e_{1}\right)\right)+\ell_{0}\left(e_{1}\right)=S\left(e_{1}\right) \\
\sum_{i=1}^{t} p_{i}\left(q_{i}\left(e_{2}\right)\right)+\sum_{i=1}^{r} \ell_{i}\left(g_{i}\left(e_{2}\right)\right)+\ell_{0}\left(e_{2}\right)=S\left(e_{2}\right) \\
\vdots \\
\sum_{i=1}^{t} p_{i}\left(q_{i}\left(e_{2^{n}}\right)\right)+\sum_{i=1}^{r} \ell_{i}\left(g_{i}\left(e_{2^{n}}\right)\right)+\ell_{0}(x)=S\left(e_{2^{n}}\right)
\end{array}\right.
$$

with (around) $t \times \frac{n^{d}}{s^{d}}+(r+1) n$ unknowns and 2^{n} equations.
■ Necessary condition:

$$
t \times \frac{n^{d}}{s^{d}}+(r+1) n \geqslant 2^{n}
$$

- In practice, the lower bound was not achieved.

	$n=4$	$n=5$	$n=6$	$n=7$	$n=8$
$s=2$ (achieved)	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{8}$	$\mathbf{1 1}$
$s=2$ (bound)	2	4	5	6	9
$s=3$ (achieved)	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{4}$
$s=3$ (bound)	2	2	3	3	4

Conclusions

Conclusions

- We need algorithmic countermeasures with formal proof of resistance.

Conclusions

- We need algorithmic countermeasures with formal proof of resistance.
- We need formal models fitting the physical reality of devices AND enabling relatively simple proofs.

Conclusions

- We need algorithmic countermeasures with formal proof of resistance.
■ We need formal models fitting the physical reality of devices AND enabling relatively simple proofs.
- Countermeasures must be efficient AND resistant against powerful adversaries.

Conclusions

- We need algorithmic countermeasures with formal proof of resistance.
■ We need formal models fitting the physical reality of devices AND enabling relatively simple proofs.
- Countermeasures must be efficient AND resistant against powerful adversaries.
■ Links with many other rich fields: ECC, MPC, efficient processing in short characteristic, etc.

Conclusions

- We need algorithmic countermeasures with formal proof of resistance.
■ We need formal models fitting the physical reality of devices AND enabling relatively simple proofs.
- Countermeasures must be efficient AND resistant against powerful adversaries.
■ Links with many other rich fields: ECC, MPC, efficient processing in short characteristic, etc.
■ Many open issues...

Conclusions

- We need algorithmic countermeasures with formal proof of resistance.
■ We need formal models fitting the physical reality of devices AND enabling relatively simple proofs.
■ Countermeasures must be efficient AND resistant against powerful adversaries.
■ Links with many other rich fields: ECC, MPC, efficient processing in short characteristic, etc.
- Many open issues...
- Improve proof techniques (automatize them?)

Conclusions

- We need algorithmic countermeasures with formal proof of resistance.
■ We need formal models fitting the physical reality of devices AND enabling relatively simple proofs.
- Countermeasures must be efficient AND resistant against powerful adversaries.
■ Links with many other rich fields: ECC, MPC, efficient processing in short characteristic, etc.
- Many open issues...
- Improve proof techniques (automatize them?)
- Improve existing techniques / adapt them to the SCA context

Conclusions

- We need algorithmic countermeasures with formal proof of resistance.
■ We need formal models fitting the physical reality of devices AND enabling relatively simple proofs.
■ Countermeasures must be efficient AND resistant against powerful adversaries.
■ Links with many other rich fields: ECC, MPC, efficient processing in short characteristic, etc.
■ Many open issues...
- Improve proof techniques (automatize them?)
- Improve existing techniques / adapt them to the SCA context
- Reduce the randomness consumption of existing techniques

Conclusions

- We need algorithmic countermeasures with formal proof of resistance.
■ We need formal models fitting the physical reality of devices AND enabling relatively simple proofs.
- Countermeasures must be efficient AND resistant against powerful adversaries.
■ Links with many other rich fields: ECC, MPC, efficient processing in short characteristic, etc.
- Many open issues...
- Improve proof techniques (automatize them?)
- Improve existing techniques / adapt them to the SCA context
- Reduce the randomness consumption of existing techniques
- Find Efficient Evaluation methods
- ...

Thank you for your attention! Questions/Remarks?

[^0]: Need?| Introduction
 Adversary Game| Security| Probing Model| Information Model|

