Algorithmic Approaches to Defeat Side Channel Analysis

Emmanuel PROUFF

ANSSI (French Network and Information Security Agency)

April 13, 2015

Devices leak information... Problematics

Probability distribution function (pdf) of Electromagnetic Emanations

Z = S(X + k) with X = 0 and k = 1.

Devices leak information... Problematics

Probability distribution function (pdf) of Electromagnetic Emanations

Z = S(X + k) with X = 0 and k = 2.

Emmanuel PROUFF - ANSSI / Invited Talk COSADE 2015

Devices leak information... Problemat

Probability distribution function (pdf) of Electromagnetic Emanations

Z = S(X + k) with X = 0 and k = 3.

Emmanuel PROUFF - ANSSI / Invited Talk COSADE 2015

Devices leak information... Problemat

Probability distribution function (pdf) of Electromagnetic Emanations

Z = S(X + k) with X = 0 and k = 4.

Devices leak information... Problematics

Probability distribution function (pdf) of Electromagnetic Emanations

Z = S(X + k) with X = 0 and $k \in \{1, 2, 3, 4\}$.

Side Channel Attacks (SCA)

- Against **each** cryptosystem and **each** implementation, find the most efficient SCA.
 - Efficiency of an SCA?
 - ▶ Which attack parameters to improve?
 - ► SCA common trends?
 - ▶ Attacks *versus* Characterization!

Countermeasures

■ For **each** cryptosystem, find efficient/effective countermeasures.

- ▶ Formally define the fact that a countermeasure thwarts an SCA?
- ▶ Which countermeasure for which SCA?
- ▶ What makes a cryptosystem more vulnerable to SCA than another?

Do we need security proofs?

- Do we need security proofs?
- Yes! Many *ad hoc* security analyses have been invalidated!
 - e.g. GolicTymen02, AkkarBevanGoubin2004, FumaroliMayerDubois2007, CoronProuffRivain2007, ProuffMacEvoy2009, Debraize2012, etc.

- Do we need security proofs?
- Yes! Many *ad hoc* security analyses have been invalidated!
 - e.g. GolicTymen02, AkkarBevanGoubin2004, FumaroliMayerDubois2007, CoronProuffRivain2007, ProuffMacEvoy2009, Debraize2012, etc.
- Are they sufficient?

- Do we need security proofs?
- Yes! Many *ad hoc* security analyses have been invalidated!
 - e.g. GolicTymen02, AkkarBevanGoubin2004, FumaroliMayerDubois2007, CoronProuffRivain2007, ProuffMacEvoy2009, Debraize2012, etc.
- Are they sufficient?
- No! Practical Security \neq Theoretical Security!
 - ▶ *e.g.* proofs may be wrong or incomplete
 - ▶ or some physical phenomena are difficult to model (*e.g.* glitches)
 - or artefacts in acquisition chain behaviour MoradiMische2013

- Do we need security proofs?
- Yes! Many *ad hoc* security analyses have been invalidated!
 - e.g. GolicTymen02, AkkarBevanGoubin2004, FumaroliMayerDubois2007, CoronProuffRivain2007, ProuffMacEvoy2009, Debraize2012, etc.
- Are they sufficient?
- No! Practical Security \neq Theoretical Security!
 - e.g. proofs may be wrong or incomplete
 - ▶ or some physical phenomena are difficult to model (*e.g.* glitches)
 - or artefacts in acquisition chain behaviour MoradiMische2013

An attempt to sum-up

- proofs help **designers** to achieve measurable security
- do not prevent **evaluators** to test theoretically-impossible attacks

$$L = \varphi(\mathbf{Z}) + \underbrace{\mathcal{N}}_{Noise}$$

$$L = \varphi(\mathbf{Z}) + \underbrace{\mathcal{N}}_{Noise}$$

• Core Idea: define mechanisms to increase the noise.

$$L = \varphi(\mathbf{Z}) + \underbrace{\mathcal{N}}_{Noise}$$

■ Core Idea: define mechanisms to decrease the SNR.

$$L = \varphi(\mathbf{Z}) + \underbrace{\mathcal{N}}_{Noise}$$

- Core Idea: define mechanisms to decrease the SNR.
 - ▶ increase the noise variance.

$$L = \varphi(\mathbf{Z}) + \underbrace{\mathcal{N}}_{Noise}$$

• Core Idea: define mechanisms to decrease the SNR.

- ▶ increase the noise variance.
- ▶ force the adversary to himself decrease the SNR.

$$L = \varphi(\mathbf{Z}) + \underbrace{\mathcal{N}}_{Noise}$$

• Core Idea: define mechanisms to decrease the SNR.

- increase the noise variance.
- ▶ force the adversary to himself decrease the SNR.

• Secret Sharing: randomly split Z into d shares $Z_1, ..., Z_d$:

$$L = \varphi(\mathbf{Z}) + \underbrace{\mathcal{N}}_{Noise}$$

• Core Idea: define mechanisms to decrease the SNR.

- increase the noise variance.
- ▶ force the adversary to himself decrease the SNR.

• Secret Sharing: randomly split Z into d shares $Z_1, ..., Z_d$:

$$L_1 = \varphi(Z_1) + \mathcal{N}_1$$
 $L_2 = \varphi(Z_2) + \mathcal{N}_2$ \cdots $L_d = \varphi(Z_d) + \mathcal{N}_d$

- all the L_i are needed to get information on Z!
- hence the adversary must combine all the L_i
- lead to multiply the \mathcal{N}_i altogether and to merge information and noise in a complex way.

Adversary Game

In the implementation, find d or less intermediate variables that jointly depend on a secret variable Z.

Developer Game

Translate (Compile?) an implementation into a new one defeating the adversary.

Implementation = sequence of elementary operations which read a memory location and write its result in another memory location.

• Recent interest from the crypto theory community (start with

DziembowskiPietrzak2007).

- Recent interest from the crypto theory community (start with DziembowskiPietrzak2007).
- Proofs are given for some leakage models:
 - ► Bounded Retrieval Model (BRM): the overall sensitive leakage is bounded.
 - (continuous) Leakage-resilient cryptography (LRC): the leakage is limited for each invocation only.

- Recent interest from the crypto theory community (start with DziembowskiPietrzak2007).
- Proofs are given for some leakage models:
 - ► Bounded Retrieval Model (BRM): the overall sensitive leakage is bounded.
 - ► (continuous) Leakage-resilient cryptography (LRC): the leakage is limited for each invocation only.
- BRM primitives are insecure against DPA and its practical relevance is still under discussion.

- Recent interest from the crypto theory community (start with DziembowskiPietrzak2007).
- Proofs are given for some leakage models:
 - ► Bounded Retrieval Model (BRM): the overall sensitive leakage is bounded.
 - ► (continuous) Leakage-resilient cryptography (LRC): the leakage is limited for each invocation only.
- BRM primitives are insecure against DPA and its practical relevance is still under discussion.
- LRC primitives aims at DPA-security
 - Based on re-keying techniques
 - ► The kind of adversary captured by those models is too strong, which strongly impacts the efficiency.

- Recent interest from the crypto theory community (start with DziembowskiPietrzak2007).
- Proofs are given for some leakage models:
 - ► Bounded Retrieval Model (BRM): the overall sensitive leakage is bounded.
 - ► (continuous) Leakage-resilient cryptography (LRC): the leakage is limited for each invocation only.
- BRM primitives are insecure against DPA and its practical relevance is still under discussion.
- LRC primitives aims at DPA-security
 - Based on re-keying techniques
 - ► The kind of adversary captured by those models is too strong, which strongly impacts the efficiency.

Conclusion: need for another approach!

First Ideas in GoubinPatarin99 and ChariJutlaRaoRohatgi99.

- First Ideas in GoubinPatarin99 and ChariJutlaRaoRohatgi99.
- Soundness based on the following remark:
 - Bit x masked $\mapsto x_0, x_1, \ldots, x_d$
 - Leakage : $L_i \sim x_i + \mathcal{N}(\mu, \sigma^2)$
 - ▶ The number of leakage samples to test

 $((L_i)_i|x=0) \stackrel{?}{=} ((L_i)_i|x=1)$ is lower bounded by $O(1)\sigma^d$.

- First Ideas in GoubinPatarin99 and ChariJutlaRaoRohatgi99.
- Soundness based on the following remark:
 - Bit x masked $\mapsto x_0, x_1, \ldots, x_d$
 - Leakage : $L_i \sim x_i + \mathcal{N}(\mu, \sigma^2)$
 - ▶ The number of leakage samples to test

 $((L_i)_i|x=0) \stackrel{?}{=} ((L_i)_i|x=1)$ is lower bounded by $O(1)\sigma^d$.

• Until now, two options exist to prove the security:

- ▶ the probing Adversary model
- the Information Bounded model.

- First Ideas in GoubinPatarin99 and ChariJutlaRaoRohatgi99.
- Soundness based on the following remark:
 - Bit x masked $\mapsto x_0, x_1, \ldots, x_d$
 - Leakage : $L_i \sim x_i + \mathcal{N}(\mu, \sigma^2)$
 - ▶ The number of leakage samples to test

 $((L_i)_i|x=0) \stackrel{?}{=} ((L_i)_i|x=1)$ is lower bounded by $O(1)\sigma^d$.

• Until now, two options exist to prove the security:

- ▶ the probing Adversary model
- ▶ the Information Bounded model.
- The two models have been recently unified in

DucDziembowskiFaust14.

• for d = 1, 2: list all the intermediate variables and check that none of them is sensitive.

- for d = 1, 2: list all the intermediate variables and check that none of them is sensitive.
- for $d \ge 3$: the method above is too costly!

- for d = 1, 2: list all the intermediate variables and check that none of them is sensitive.
- for $d \ge 3$: the method above is too costly!
- Issue: how to prove that a scheme can be made d^{th} -order secure for any given d?

- for d = 1, 2: list all the intermediate variables and check that none of them is sensitive.
- for $d \ge 3$: the method above is too costly!
- Issue: how to prove that a scheme can be made d^{th} -order secure for any given d?
- Ishai-Sahai-Wagner's approach:

- for d = 1, 2: list all the intermediate variables and check that none of them is sensitive.
- for $d \ge 3$: the method above is too costly!
- Issue: how to prove that a scheme can be made d^{th} -order secure for any given d?
- Ishai-Sahai-Wagner's approach:
 - ► Two players: the **Adversary** who can observe any *d*-tuple of intermediate results and an **Oracle** with no access to the implementation

- for d = 1, 2: list all the intermediate variables and check that none of them is sensitive.
- for $d \ge 3$: the method above is too costly!
- Issue: how to prove that a scheme can be made d^{th} -order secure for any given d?
- Ishai-Sahai-Wagner's approach:
 - ► Two players: the **Adversary** who can observe any *d*-tuple of intermediate results and an **Oracle** with no access to the implementation
 - ► The game: prove that, for any *d*-tuple, the oracle can **simulate** the adversary's view of the execution.

- for d = 1, 2: list all the intermediate variables and check that none of them is sensitive.
- for $d \ge 3$: the method above is too costly!
- Issue: how to prove that a scheme can be made d^{th} -order secure for any given d?
- Ishai-Sahai-Wagner's approach:
 - ► Two players: the **Adversary** who can observe any *d*-tuple of intermediate results and an **Oracle** with no access to the implementation
 - ► The game: prove that, for any *d*-tuple, the oracle can **simulate** the adversary's view of the execution.
- Method works well for simple schemes (e.g. multiplications)
 BUT difficult to apply in general!

- for d = 1, 2: list all the intermediate variables and check that none of them is sensitive.
- for $d \ge 3$: the method above is too costly!
- Issue: how to prove that a scheme can be made d^{th} -order secure for any given d?
- Ishai-Sahai-Wagner's approach:
 - ► Two players: the **Adversary** who can observe any *d*-tuple of intermediate results and an **Oracle** with no access to the implementation
 - ► The game: prove that, for any *d*-tuple, the oracle can **simulate** the adversary's view of the execution.
- Method works well for simple schemes (e.g. multiplications)
 BUT difficult to apply in general!
- Recently *Belaid*, *Fouque and Barthe* developed automatic tools to generate security certificates.

■ Implementation Model. Micali-Reyzin, TCC 2004

Implementation = $\frac{\text{seq. of elem. computations producing}}{\text{a list of interm. results } (Z_i)_i.$

■ Implementation Model. Micali-Reyzin, TCC 2004

Implementation = $\frac{\text{seq. of elem. computations producing}}{\text{a list of interm. results } (Z_i)_i.$

• Leakage on Z_i modelled by a probabilistic function f_i s.t.

$\mathrm{MI}(Z_i; f_i(Z_i)) \le O(1/\psi) \ ,$

where ψ is a security parameter depending on the noise.

■ Implementation Model. Micali-Reyzin, TCC 2004

Implementation = $\begin{array}{l} \text{seq. of elem. computations producing} \\ \text{a list of interm. results } (Z_i)_i. \end{array}$

• Leakage on Z_i modelled by a probabilistic function f_i s.t.

 $\mathrm{MI}(Z_i; f_i(Z_i)) \le O(1/\psi) \ ,$

where ψ is a security parameter depending on the noise. Security Proof goal: find a deterministic function P s.t.:

 $\mathrm{MI}((X,k); (f_i(Z_i))_i) \le P(1/\psi)$

where X is the plaintext and k is the key.

■ First Issue: how to share sensitive data?

• Second Issue: how to securely process on shared data?

Introduction Security Models Constructions

- First Issue: how to share sensitive data?
- Related to:
 - secret sharing Shamir79
 - design of error correcting codes with large dual distance Massey93

- Second Issue: how to securely process on shared data?
- Related to:
 - secure multi-party computation
 - circuit processing in presence of leakage
 - efficient polynomial evaluation

- Linear Secret Sharing with parameters n and d:
 - n elements Z_i such that

$$Z = \sum_{i} Z_{i}$$

• no sub-family of $d-1 Z_i$ depends on Z.

- Linear Secret Sharing with parameters n and d:
 - n elements Z_i such that

$$Z = \sum_{i} Z_{i}$$

• no sub-family of d-1 Z_i depends on Z.

■ Massey (1993):

 $\begin{array}{c} \text{designing an } (n,d) \text{ linear secret sharing} \\ \longleftrightarrow \\ \text{building a code with length } n+1 \text{ and dual distance } d \end{array}$

- Linear Secret Sharing with parameters n and d:
 - n elements Z_i such that

$$Z = \sum_{i} Z_{i}$$

• no sub-family of d-1 Z_i depends on Z.

■ Massey (1993):

designing an (n, d) linear secret sharing \iff building a code with length n + 1 and dual distance d

• Yes, interesting, but ... who cares?

- Linear Secret Sharing with parameters n and d:
 - n elements Z_i such that

$$Z = \sum_{i} Z_{i}$$

• no sub-family of d-1 Z_i depends on Z.

■ Massey (1993):

 $\begin{array}{c} \text{designing an } (n,d) \text{ linear secret sharing} \\ \longleftrightarrow \\ \text{building a code with length } n+1 \text{ and dual distance } d \end{array}$

- Yes, interesting, but ... who cares?
 - gives a general framework to describe and analyse all linear sharing schemes

- Linear Secret Sharing with parameters n and d:
 - n elements Z_i such that

$$Z = \sum_{i} Z_{i}$$

• no sub-family of d-1 Z_i depends on Z.

■ Massey (1993):

 $\begin{array}{c} \text{designing an } (n,d) \text{ linear secret sharing} \\ \longleftrightarrow \\ \text{building a code with length } n+1 \text{ and dual distance } d \end{array}$

- Yes, interesting, but ... who cares?
 - gives a general framework to describe and analyse all linear sharing schemes
 - ▶ links our problems with those of a rich community

Introduction| Security Models| Constructions New Construction | Conclusions And Perspectives | Linear Sharing

Alternatives | + And \times | Other Method | Threshold |

■ Linear Sharing = Encoding

$$\begin{pmatrix} Z & R_1 & \dots & R_{k-1} \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 & 0 & \alpha_{1,k} & \dots & \alpha_{1,n} \\ 0 & 1 & 0 & 0 & \alpha_{2,k} & \dots & \alpha_{2,n} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 1 & \alpha_{k,k} & \dots & \alpha_{k,n} \end{pmatrix}$$
$$= \begin{pmatrix} Z & Z_1 & \dots & Z_{k-1} & Z_k & \dots & Z_n \end{pmatrix}$$

Introduction| Security Models| Constructions

Linear Sharing

New Construction | Conclusions And Perspectives | Alternatives | + And \times | Other Method | Threshold |

■ Linear Sharing = Encoding

 $\begin{pmatrix} \mathbf{Z} & Z_1 & \dots & Z_n \end{pmatrix}$

$$\times \begin{pmatrix} \alpha_{1,k} & \dots & \alpha_{k,k} \\ \alpha_{1,k+1} & \dots & \alpha_{k,k+1} \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_{1,n} & \dots & \dots & \alpha_{k,n} \\ -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & -1 \end{pmatrix} = (0 & \dots & 0)$$

Linear Sharing

New Construction | Conclusions And Perspectives | Alternatives | + And \times | Other Method | Threshold |

■ Linear Sharing = Encoding

$$\begin{pmatrix} Z & Z_1 & \dots & Z_n \end{pmatrix} \times \begin{pmatrix} \vec{H_1} & \vec{H_2} & \dots & \vec{H_k} \end{pmatrix} = \begin{pmatrix} 0 & 0 & \dots & 0 \end{pmatrix}$$

els Constructions

Linear Sharing

New Construction | Conclusions And Perspectives | Alternatives | + And × | Other Method | Threshold |

• Linear Sharing = Encoding

$$\begin{pmatrix} Z & Z_1 & \dots & Z_n \end{pmatrix} \times \begin{pmatrix} \vec{H_1} & \vec{H_2} & \dots & \vec{H_k} \end{pmatrix} = \begin{pmatrix} 0 & 0 & \dots & 0 \end{pmatrix}$$

• implies for every $i \in [1..k]$:

$$\mathbf{Z} = H_{i0}^{-1} \sum_{j=2}^{n} Z_j \times H_{i,j}$$
 .

lels Constructions

Linear Sharing

New Construction | Conclusions And Perspectives | Alternatives | + And × | Other Method | Threshold |

• Linear Sharing = Encoding

$$\begin{pmatrix} Z & Z_1 & \dots & Z_n \end{pmatrix} \times \begin{pmatrix} \vec{H_1} & \vec{H_2} & \dots & \vec{H_k} \end{pmatrix} = \begin{pmatrix} 0 & 0 & \dots & 0 \end{pmatrix}$$

• implies for every $i \in [1..k]$:

$$\mathbf{Z} = H_{i0}^{-1} \sum_{j=2}^n Z_j \times H_{i,j} \ .$$

• masking order $< \min_i HW(\vec{H_i}) - 1$

dels Constructions

Linear Sharing

New Construction | Conclusions And Perspectives | Alternatives | + And × | Other Method | Threshold |

• Linear Sharing = Encoding

$$\begin{pmatrix} Z & Z_1 & \dots & Z_n \end{pmatrix} \times \begin{pmatrix} \vec{H_1} & \vec{H_2} & \dots & \vec{H_k} \end{pmatrix} = \begin{pmatrix} 0 & 0 & \dots & 0 \end{pmatrix}$$

• implies for every $i \in [1..k]$:

$$\mathbf{Z} = H_{i0}^{-1} \sum_{j=2}^{n} Z_j \times H_{i,j}$$
.

- masking order $< \min_i HW(\vec{H_i}) 1$
- Actually masking order = $\min_{\vec{H} \in C^{\perp}} HW(\vec{H}) 1$ Massey93

Boolean Sharing: encoding with the matrix

$$G = \begin{pmatrix} 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 1 & 1 \end{pmatrix}$$

implies k = n - 1.

Emmanuel PROUFF - ANSSI / Invited Talk COSADE 2015

13/28

dels Constructions

New Construction | Conclusions And Perspectives | Alternatives | + And × | Other Method | Threshold |

Boolean Sharing: encoding with the matrix

Linear Sharing

$$G = \begin{pmatrix} 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 1 & 1 \end{pmatrix}$$

implies k = n - 1.

■ Shamir's secret Sharing:

- generate a random degree-d polynomial P(X) such that P(0) = Z
- ▶ build the Z_i such that $Z_i = P(\alpha_i)$ for $n \ge 2d$ different public values α_i .

dels | Constructions

New Construction | Conclusions And Perspectives |

Boolean Sharing: encoding with the matrix

Linear Sharing

$$G = \begin{pmatrix} 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 1 & 1 \end{pmatrix}$$

implies k = n - 1.

■ Shamir's secret Sharing:

- generate a random degree-d polynomial P(X) such that P(0) = Z
- ▶ build the Z_i such that $Z_i = P(\alpha_i)$ for $n \ge 2d$ different public values α_i .
- ... amounts to define a Reed-Solomon code with parameters $[n+1, d+1, \cdot]$ *McElieceSarwate81*.

Boolean Sharing: encoding with the matrix

$$G = \begin{pmatrix} 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 1 & 1 \end{pmatrix}$$

implies k = n - 1.

■ Shamir's secret Sharing:

- generate a random degree-d polynomial P(X) such that $P(0) = \mathbb{Z}$
- ▶ build the Z_i such that $Z_i = P(\alpha_i)$ for $n \ge 2d$ different public values α_i .
- ... amounts to define a Reed-Solomon code with parameters $[n+1, d+1, \cdot]$ *McElieceSarwate81*.
- Main issue: minimize n for a given d.

 $Z \mapsto Z_0, \ldots, Z_d$ s.t. $Z_i \neq 0$ and $Z = Z_0 \times \cdots \times Z_d$

 $Z \mapsto Z_0, \ldots, Z_d$ s.t. $Z_i \neq 0$ and $Z = Z_0 \times \cdots \times Z_d$

Affine Masking von Willich2001, Fumarolli Martinelli ProuffRivain2010

 $Z \mapsto Z_0, Z_1, Z_2$ s.t. $Z_1 \neq 0$ and $Z = \frac{Z_0}{Z_1} + Z_2$

 $Z \mapsto Z_0, \ldots, Z_d$ s.t. $Z_i \neq 0$ and $Z = Z_0 \times \cdots \times Z_d$

■ Affine Masking vonWillich2001,FumarolliMartinelliProuffRivain2010

$$\mathbf{Z} \mapsto Z_0, Z_1, Z_2 \text{ s.t. } \mathbf{Z}_1 \neq \mathbf{0} \text{ and } \mathbf{Z} = \frac{Z_0}{Z_1} + Z_2$$

■ Modular Additive Masking Coron1999

$$Z \mapsto Z_0, Z_1 \text{ s.t. } Z = Z_1 + Z_2 \mod \dots$$

 $Z \mapsto Z_0, \ldots, Z_d$ s.t. $Z_i \neq 0$ and $Z = Z_0 \times \cdots \times Z_d$

■ Affine Masking vonWillich2001,FumarolliMartinelliProuffRivain2010

$$\mathbf{Z} \mapsto Z_0, Z_1, Z_2 \text{ s.t. } \mathbf{Z}_1 \neq \mathbf{0} \text{ and } \mathbf{Z} = \frac{Z_0}{Z_1} + Z_2$$

■ Modular Additive Masking Coron1999

$$Z \mapsto Z_0, Z_1 \text{ s.t. } Z = Z_1 + Z_2 \mod \dots$$

■ Homographic Masking CourtoisGoubin2005

$$Z \mapsto \frac{Z_0 \times Z + Z_1}{Z_2 \times Z + Z_3}$$
 or ∞ if $Z = -\frac{Z_3}{Z_2}$ or $\frac{Z_0}{Z_2}$ if $Z = \infty$

Leakage Squeezing

MaghrebiGuilleyDanger 2011, CarletDanger GuilleyMaghrebi 2014

$Z \mapsto Z_0, Z_1$ s.t. $Z = Z_0 \oplus Z_1$ and $Z_i \in \mathcal{C}$

where C is a code with dual distance d.

Leakage Squeezing

MaghrebiGuilley Danger 2011, Carlet Danger Guilley Maghrebi 2014

 $Z \mapsto Z_0, Z_1$ s.t. $Z = Z_0 \oplus Z_1$ and $Z_i \in \mathcal{C}$

where C is a code with dual distance d.

■ Inner Product BalaschFaustGierlichsVerbauwhede2012 and

BalaschFaustGierlichs2015

$$\mathbf{Z} \mapsto \mathbf{L}, \mathbf{R} \in \mathrm{GF}(2^n)^d \text{ s.t. } \mathbf{Z} = \mathbf{L} \cdot \mathbf{R}$$

■ Securing elementary Operations:

- Securing elementary Operations:
- Original idea by Ishai-Sahai-Wagner: limited to GF(2)

- Securing elementary Operations:
- Original idea by Ishai-Sahai-Wagner: limited to GF(2)
- Extended to any field in *RivainProuff2010* and

- Securing elementary Operations:
- Original idea by Ishai-Sahai-Wagner: limited to GF(2)
- Extended to any field in *RivainProuff2010* and

• Based on Boolean Sharing: $Z = Z_0 \oplus Z_1 \oplus \ldots Z_d$

- Securing elementary Operations:
- Original idea by Ishai-Sahai-Wagner: limited to GF(2)
- Extended to any field in *RivainProuff2010* and

Based on Boolean Sharing: $Z = Z_0 \oplus Z_1 \oplus \ldots Z_d$

• Securing linear functions L:

- Securing elementary Operations:
- Original idea by Ishai-Sahai-Wagner: limited to GF(2)
- Extended to any field in *RivainProuff2010* and

- Based on Boolean Sharing: $Z = Z_0 \oplus Z_1 \oplus \ldots Z_d$
- Securing linear functions L:

- Securing elementary Operations:
- Original idea by Ishai-Sahai-Wagner: limited to GF(2)
- Extended to any field in *RivainProuff2010* and

- Based on Boolean Sharing: $Z = Z_0 \oplus Z_1 \oplus \ldots Z_d$
- Securing linear functions L:

• Much more difficult for non-linear functions (*i.e.* multiplication)

■ Securing Multiplication IshaiSahaiWagner2003:

- ▶ Input: $(a_i)_i$, $(b_i)_i$ s.t. $\bigoplus_i a_i = a$, $\bigoplus_i b_i = b$
- Output: $(c_i)_i$ s.t. $\bigoplus_i c_i = ab$

■ Securing Multiplication IshaiSahaiWagner2003:

- Input: $(a_i)_i$, $(b_i)_i$ s.t. $\bigoplus_i a_i = a$, $\bigoplus_i b_i = b$
- Output: $(c_i)_i$ s.t. $\bigoplus_i c_i = ab$

$$\bigoplus_i c_i = \left(\bigoplus_i a_i\right) \left(\bigoplus_i b_i\right) = \bigoplus_{i,j} a_i b_j$$

Securing Multiplication IshaiSahaiWagner2003:

• Input: $(a_i)_i, (b_i)_i$ s.t. $\bigoplus_i a_i = a, \bigoplus_i b_i = b$

• Output:
$$(c_i)_i$$
 s.t. $\bigoplus_i c_i = ab$

$$\bigoplus_i c_i = \left(\bigoplus_i a_i\right) \left(\bigoplus_i b_i\right) = \bigoplus_{i,j} a_i b_j$$

• Illustration of ISW scheme for d = 2:

(a_0b_0)	a_0b_1	a_0b_2
a_1b_0	a_1b_1	a_1b_2
$\langle a_2 b_0 \rangle$	a_2b_1	a_2b_2

Securing Multiplication IshaiSahaiWagner2003:

• Input: $(a_i)_i$, $(b_i)_i$ s.t. $\bigoplus_i a_i = a$, $\bigoplus_i b_i = b$

• Output:
$$(c_i)_i$$
 s.t. $\bigoplus_i c_i = ab$

$$\bigoplus_{i} c_{i} = \left(\bigoplus_{i} a_{i}\right) \left(\bigoplus_{i} b_{i}\right) = \bigoplus_{i,j} a_{i} b_{j}$$

• Illustration of ISW scheme for d = 2:

$$\begin{pmatrix} a_0b_0 & a_0b_1 & a_0b_2\\ a_1b_0 & a_1b_1 & a_1b_2\\ a_2b_0 & a_2b_1 & a_2b_2 \end{pmatrix} \oplus \begin{pmatrix} r_{0,0} & r_{0,1} & r_{0,2}\\ r_{1,0} & r_{1,1} & r_{1,2}\\ r_{2,0} & r_{2,1} & r_{2,2} \end{pmatrix}$$

where the $r_{i,j}$ are a $((d+1)^2, d)$ -sharing of 0.

■ Securing Multiplication IshaiSahaiWagner2003:

• Input: $(a_i)_i$, $(b_i)_i$ s.t. $\bigoplus_i a_i = a$, $\bigoplus_i b_i = b$

• Output:
$$(c_i)_i$$
 s.t. $\bigoplus_i c_i = ab$

$$\bigoplus_{i} c_{i} = \left(\bigoplus_{i} a_{i}\right) \left(\bigoplus_{i} b_{i}\right) = \bigoplus_{i,j} a_{i} b_{j}$$

• Illustration of ISW scheme for d = 2:

$$\begin{pmatrix} a_0b_0 \oplus r_{0,0} & a_0b_1 \oplus r_{0,1} & a_0b_2 \oplus r_{0,2} \\ a_1b_0 \oplus r_{1,0} & a_1b_1 \oplus r_{1,1} & a_1b_2 \oplus r_{1,2} \\ a_2b_0 \oplus r_{2,0} & a_2b_1 \oplus r_{2,1} & a_2b_2 \oplus r_{2,2} \end{pmatrix}$$

Securing Multiplication IshaiSahaiWagner2003:

• Input: $(a_i)_i$, $(b_i)_i$ s.t. $\bigoplus_i a_i = a$, $\bigoplus_i b_i = b$

• Output:
$$(c_i)_i$$
 s.t. $\bigoplus_i c_i = ab$

$$\bigoplus_{i} c_{i} = \left(\bigoplus_{i} a_{i}\right) \left(\bigoplus_{i} b_{i}\right) = \bigoplus_{i,j} a_{i} b_{j}$$

• Illustration of ISW scheme for d = 2:

 $\begin{pmatrix} a_0b_0 \oplus r_{0,0} & a_0b_1 \oplus r_{0,1} & a_0b_2 \oplus r_{0,2} \\ a_1b_0 \oplus r_{1,0} & a_1b_1 \oplus r_{1,1} & a_1b_2 \oplus r_{1,2} \\ a_2b_0 \oplus r_{2,0} & a_2b_1 \oplus r_{2,1} & a_2b_2 \oplus r_{2,2} \end{pmatrix}$

■ Securing Multiplication IshaiSahaiWagner2003:

• Input: $(a_i)_i$, $(b_i)_i$ s.t. $\bigoplus_i a_i = a$, $\bigoplus_i b_i = b$

• Output:
$$(c_i)_i$$
 s.t. $\bigoplus_i c_i = ab$

$$\bigoplus_{i} c_{i} = \left(\bigoplus_{i} a_{i}\right) \left(\bigoplus_{i} b_{i}\right) = \bigoplus_{i,j} a_{i} b_{j}$$

• Illustration of ISW scheme for d = 2:

$$\begin{pmatrix} a_0b_0 \oplus r_{0,0} & a_0b_1 \oplus r_{0,1} & a_0b_2 \oplus r_{0,2} \\ a_1b_0 \oplus r_{1,0} & a_1b_1 \oplus r_{1,1} & a_1b_2 \oplus r_{1,2} \\ a_2b_0 \oplus r_{2,0} & a_2b_1 \oplus r_{2,1} & a_2b_2 \oplus r_{2,2} \end{pmatrix}$$

■ Securing Multiplication IshaiSahaiWagner2003:

• Input: $(a_i)_i, (b_i)_i$ s.t. $\bigoplus_i a_i = a, \bigoplus_i b_i = b$

• Output:
$$(c_i)_i$$
 s.t. $\bigoplus_i c_i = ab$

$$\bigoplus_{i} c_{i} = \left(\bigoplus_{i} a_{i}\right) \left(\bigoplus_{i} b_{i}\right) = \bigoplus_{i,j} a_{i} b_{j}$$

• Illustration of ISW scheme for d = 2:

$$\begin{pmatrix} a_0b_0 \oplus r_{0,0} & a_0b_1 \oplus r_{0,1} & a_0b_2 \oplus r_{0,2} \\ a_1b_0 \oplus r_{1,0} & a_1b_1 \oplus r_{1,1} & a_1b_2 \oplus r_{1,2} \\ a_2b_0 \oplus r_{2,0} & a_2b_1 \oplus r_{2,1} & a_2b_2 \oplus r_{2,2} \end{pmatrix}$$

Securing Multiplication IshaiSahaiWagner2003:

• Input: $(a_i)_i$, $(b_i)_i$ s.t. $\bigoplus_i a_i = a$, $\bigoplus_i b_i = b$

• Output:
$$(c_i)_i$$
 s.t. $\bigoplus_i c_i = ab$

$$\bigoplus_{i} c_{i} = \left(\bigoplus_{i} a_{i}\right) \left(\bigoplus_{i} b_{i}\right) = \bigoplus_{i,j} a_{i} b_{j}$$

• Illustration of ISW scheme for d = 2:

$$\begin{pmatrix} a_0b_0 \oplus r_{0,0} & a_0b_1 \oplus r_{0,1} & a_0b_2 \oplus r_{0,2} \\ a_1b_0 \oplus r_{1,0} & a_1b_1 \oplus r_{1,1} & a_1b_2 \oplus r_{1,2} \\ a_2b_0 \oplus r_{2,0} & a_2b_1 \oplus r_{2,1} & a_2b_2 \oplus r_{2,2} \end{pmatrix}$$

• Actually, we can do it with $(d+1)^2/2$ random values instead of $(d+1)^2$.

$$S(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_{2^n - 1} x^{2^n - 1}$$

$$S(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_{2^n - 1} x^{2^n - 1}$$

- Four kinds of operations over $GF(2^n)$:
 - 1. additions
 - 2. scalar multiplications (*i.e.* by constants)
 - 3. squares
 - 4. regular multiplications

$$S(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_{2^n - 1} x^{2^n - 1}$$

- Four kinds of operations over $GF(2^n)$:
 - 1. additions
 - 2. scalar multiplications (*i.e.* by constants)
 - 3. squares
 - 4. regular multiplications
- Schemes with complexity O(d) for the 3 first kinds

$$(x+y) \longrightarrow (x_0+y_0), (x_1+y_1), \cdots, (x_d+y_d)$$

$$\blacktriangleright x^2 \longrightarrow x_0^2, x_1^2, \dots + x_d^2$$

$$\bullet \ a \cdot x \quad \longrightarrow a \cdot x_0, a \cdot x_1, \cdots, a \cdot x_d$$

$$S(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_{2^n - 1} x^{2^n - 1}$$

- Four kinds of operations over $GF(2^n)$:
 - 1. additions
 - 2. scalar multiplications (*i.e.* by constants)
 - 3. squares
 - 4. regular multiplications \Rightarrow nonlinear multiplications
- Schemes with complexity O(d) for the 3 first kinds

$$(x+y) \longrightarrow (x_0+y_0), (x_1+y_1), \cdots, (x_d+y_d)$$

$$x^2 \longrightarrow x_0^2, x_1^2, \cdots + x_d^2$$

- $a \cdot x \longrightarrow a \cdot x_0, a \cdot x_1, \cdots, a \cdot x_d$
- Schemes with complexity $O(d^2)$ for the non-linear multiplication *IshaiSahaiWagner2004*

The masking complexity of S is the minimal number of non-linear multiplications needed for its evaluation.

The masking complexity of S is the minimal number of non-linear multiplications needed for its evaluation.

Problematic 1: compute the masking complexity of any S (at least bounds).

The masking complexity of S is the minimal number of non-linear multiplications needed for its evaluation.

Problematic 1: compute the masking complexity of any S (at least bounds).

Problematic 2: find evaluations methods efficient for the masking complexity criterion.

The masking complexity of S is the minimal number of non-linear multiplications needed for its evaluation.

Problematic 1: compute the masking complexity of any S (at least bounds).

Problematic 2: find evaluations methods efficient for the masking complexity criterion.

For monomials: amounts to look for short 2-addition-chain exponentiations.

The masking complexity of S is the minimal number of non-linear multiplications needed for its evaluation.

Problematic 1: compute the masking complexity of any S (at least bounds).

Problematic 2: find evaluations methods efficient for the masking complexity criterion.

For monomials: amounts to look for short 2-addition-chain exponentiations.

For polynomials: amounts to find efficient decompositions;

- Knuth-Eve algorithm VonZurGathenNoker2003
- or the Cyclotomic Method CarletGoubinProuffQuisquaterRivain2012
- or Coron-Roy-Vivek's method CoronRoyVivek2014

• Idea: Mix additive with multiplicative masking defined on the same field.

- Idea: Mix additive with multiplicative masking defined on the same field.
- Recall (Additive masking):
 - $x \in \operatorname{GF}(2^n) \mapsto (x_0, \cdots x_d) \in \operatorname{GF}(2^n)^{d+1}$ s.t.

$$\sum_i x_i = x \; .$$

- Idea: Mix additive with multiplicative masking defined on the same field.
- Recall (Additive masking):
 - $x \in \operatorname{GF}(2^n) \mapsto (x_0, \cdots x_d) \in \operatorname{GF}(2^n)^{d+1}$ s.t.

$$\sum_i x_i = x \; .$$

• Recall (Multiplicative masking): $x \in \operatorname{GF}(2^n)^* \mapsto (x_0, \cdots x_d) \in \operatorname{GF}(2^n)^{*d+1} \text{ s.t.}$ $\prod x_i = x$.

- Idea: Mix additive with multiplicative masking defined on the same field.
- Recall (Additive masking):
 - $x \in \operatorname{GF}(2^n) \mapsto (x_0, \cdots x_d) \in \operatorname{GF}(2^n)^{d+1}$ s.t.

$$\sum_i x_i = x \; .$$

- Recall (Multiplicative masking): $x \in \operatorname{GF}(2^n)^* \mapsto (x_0, \cdots x_d) \in \operatorname{GF}(2^n)^{*d+1} \text{ s.t.}$ $\prod_i x_i = x$.
- So, use additive masking for affine transformations and multiplicative masking for power functions.

• Issue 1: convert additive masking into multiplicative masking without leaking information in the *d*th-order probing model?

- Issue 1: convert additive masking into multiplicative masking without leaking information in the *d*th-order probing model?
 - ▶ Solution: conversions algorithms proposed in GenelleProuffQuisquater11 (complexity: d^2 additions and d(3+d)/2 multiplications).

- Issue 1: convert additive masking into multiplicative masking without leaking information in the *d*th-order probing model?
 - Solution: conversions algorithms proposed in GenelleProuffQuisquater11 (complexity: d^2 additions and d(3+d)/2 multiplications).
- Issue 2: multiplicative is only sound in the multiplicative group! How to deal with the 0 value problem?

- Issue 1: convert additive masking into multiplicative masking without leaking information in the *d*th-order probing model?
 - ▶ Solution: conversions algorithms proposed in GenelleProuffQuisquater11 (complexity: d^2 additions and d(3+d)/2 multiplications).
- Issue 2: multiplicative is only sound in the multiplicative group! How to deal with the 0 value problem?
 - ► Solution: map the sharing of 0 into the sharing of 1 and keep trace of this modification for further correction.
 - Amounts to secure the processing of the function

 $x\mapsto x\oplus \delta_0(x)$ with $\delta_0(x)=x_0$ and x_1 and \dots and x_n .

- Issue 1: convert additive masking into multiplicative masking without leaking information in the *d*th-order probing model?
 - Solution: conversions algorithms proposed in GenelleProuffQuisquater11 (complexity: d^2 additions and d(3+d)/2 multiplications).
- Issue 2: multiplicative is only sound in the multiplicative group! How to deal with the 0 value problem?
 - ► Solution: map the sharing of 0 into the sharing of 1 and keep trace of this modification for further correction.
 - ▶ Amounts to secure the processing of the function

 $x\mapsto x\oplus \delta_0(x)$ with $\delta_0(x)=x_0$ AND x_1 AND \dots AND x_n .

• Soundness: for any power e, we have

$$(x \oplus \delta_0(x))^e = x^e \oplus \delta_0(x)$$

Notation:

$$S^{\star}(Z_0, \cdots, Z_d) \doteq S(\sum_i Z_i) = S(Z)$$

Notation:

$$S^{\star}(Z_0, \cdots, Z_d) \doteq S(\sum_i Z_i) = S(Z)$$

Idea: find the smallest t s.t. there exist t indices subsets $I_j \subsetneq \{0, ..., d+1\}$ and t balanced functions S_j s.t.:

Notation:

$$S^{\star}(Z_0, \cdots, Z_d) \doteq S(\sum_i Z_i) = S(Z)$$

Idea: find the smallest t s.t. there exist t indices subsets $I_j \subsetneq \{0, ..., d+1\}$ and t balanced functions S_j s.t.: 1. [Completeness]

$$S(Z_0, \cdots, Z_d) = \sum_j S_j((Z_i)_{i \in I_j}) ,$$

Notation:

$$S^{\star}(Z_0, \cdots, Z_d) \doteq S(\sum_i Z_i) = S(Z)$$

Idea: find the smallest t s.t. there exist t indices subsets $I_j \subsetneq \{0, ..., d+1\}$ and t balanced functions S_j s.t.: 1. [Completeness]

$$S(Z_0, \cdots, Z_d) = \sum_j S_j((Z_i)_{i \in I_j}) ,$$

2. [Security] The *t* values $S_0((Z_i)_{i \in I_0})$, ..., $S_{t-1}((Z_i)_{i \in I_{t-1}})$ form a *t*-sharing of S(Z).

Notation:

$$S^{\star}(Z_0, \cdots, Z_d) \doteq S(\sum_i Z_i) = S(Z)$$

Idea: find the smallest t s.t. there exist t indices subsets $I_j \subsetneq \{0, ..., d+1\}$ and t balanced functions S_j s.t.: 1. [Completeness]

$$S(Z_0, \cdots, Z_d) = \sum_j S_j((Z_i)_{i \in I_j}) ,$$

2. [Security] The t values $S_0((Z_i)_{i \in I_0})$, ..., $S_{t-1}((Z_i)_{i \in I_{t-1}})$ form a t-sharing of S(Z).

Recently extended to any order at Asiacrypt2014.

Secure Evaluation of a Polynomial h(x) with algebraic degree s

h(x) a polynomial with algebraic degree s

$$h\left(\sum_{i=1}^{d} a_i\right) = \sum_{j \le s} c_j \sum_{\substack{I \subseteq [1;d] \\ |I|=i}} h\left(\sum_{i \in I} a_i\right) ,$$

where c_1 are constant binary coefficients.

Secure Evaluation of a Polynomial h(x) with algebraic degree s

h(x) a polynomial with algebraic degree s

$$h\left(\sum_{i=1}^{d} a_i\right) = \sum_{j \le s} c_j \sum_{\substack{I \le [1:d] \\ |I|=j}} h\left(\sum_{i \in I} a_i\right) ,$$

where c_1 are constant binary coefficients.

Hence: securing at order d reduces to securing at order s.

Secure Evaluation of a Polynomial h(x) with algebraic degree s

h(x) a polynomial with algebraic degree s

$$h\left(\sum_{i=1}^{d} a_i\right) = \sum_{j \le s} c_j \sum_{\substack{I \subseteq [1;d] \\ |I|=j}} h\left(\sum_{i \in I} a_i\right) ,$$

where c_1 are constant binary coefficients.

Hence: securing at order d reduces to securing at order s. Leads to the secure evaluation methods with complexity $O(d^s)$.

Secure Evaluation of a Polynomial h(x) with algebraic degree s

h(x) a polynomial with algebraic degree s

$$h\left(\sum_{i=1}^{d} a_i\right) = \sum_{j \le s} c_j \sum_{\substack{I \subseteq [1;d] \\ |I|=j}} h\left(\sum_{i \in I} a_i\right) ,$$

where c_1 are constant binary coefficients.

Hence: securing at order d reduces to securing at order s. Leads to the secure evaluation methods with complexity $O(d^s)$. Example: securing degree-2 functions is as complex as securing a multiplication (with ISW scheme).

Secure Evaluation of a Polynomial h(x) with algebraic degree s

h(x) a polynomial with algebraic degree s

$$h\left(\sum_{i=1}^{d} a_i\right) = \sum_{j \le s} c_j \sum_{\substack{I \le [1;d] \\ |I|=j}} h\left(\sum_{i \in I} a_i\right) ,$$

where c_1 are constant binary coefficients.

Hence: securing at order d reduces to securing at order s. Leads to the secure evaluation methods with complexity $O(d^s)$. Example: securing degree-2 functions is as complex as securing a multiplication (with ISW scheme). Efficient (compared to SoA) for small s or $n \ll d^s$.

1. Randomly generate r degree-s polynomials f_i

1. Randomly generate r degree-s polynomials f_i

<

2. Derive new polynomials $(g_i)_i$:

$$\begin{cases} g_1(x) = f_1(x) \\ g_i(x) = f_i(g_{i-1}(x)) \end{cases}$$

- 1. Randomly generate r degree-s polynomials f_i
- 2. Derive new polynomials $(g_i)_i$:

$$\begin{cases} g_1(x) = f_1(x) \\ g_i(x) = f_i(g_{i-1}(x)) \end{cases}$$

3. Randomly generate t polynomials $(q_i)_i$ s.t.

$$q_i(x) = \sum_{j=1}^r \ell_{i,j}(g_j(x)) + \ell_{i,0}(x) ,$$

where the ℓ_j are linearized polynomials.

- 1. Randomly generate r degree-s polynomials f_i
- 2. Derive new polynomials $(g_i)_i$:

$$\begin{cases} g_1(x) = f_1(x) \\ g_i(x) = f_i(g_{i-1}(x)) \end{cases}$$

3. Randomly generate t polynomials $(q_i)_i$ s.t.

$$q_i(x) = \sum_{j=1}^r \ell_{i,j}(g_j(x)) + \ell_{i,0}(x) ,$$

where the ℓ_j are linearized polynomials.

4. Find t polynomials p_i of algebraic degree s and for r + 1 linearized polynomials ℓ_i such that

$$S(x) = \sum_{i=1}^{t} p_i(q_i(x)) + \sum_{i=1}^{r} \ell_i(g_i(x)) + \ell_0(x) .$$

Emmanuel PROUFF - ANSSI / Invited Talk COSADE 2015

• The new method amounts to solve the linear system:

$$\sum_{i=1}^{t} p_i(q_i(e_1)) + \sum_{i=1}^{r} \ell_i(g_i(e_1)) + \ell_0(e_1) = S(e_1)$$

$$\sum_{i=1}^{t} p_i(q_i(e_2)) + \sum_{i=1}^{r} \ell_i(g_i(e_2)) + \ell_0(e_2) = S(e_2)$$

$$\vdots$$

$$\sum_{i=1}^{t} p_i(q_i(e_{2^n})) + \sum_{i=1}^{r} \ell_i(g_i(e_{2^n})) + \ell_0(x) = S(e_{2^n})$$

with (around) $t \times \frac{n^d}{s^d} + (r+1)n$ unknowns and 2^n equations.

Necessary condition:

$$t \times \frac{n^d}{s^d} + (r+1)n \geqslant 2^n \ .$$

■ In practice, the lower bound was not achieved.

	n = 4	n = 5	n = 6	n = 7	n = 8
s = 2 (achieved)	3	4	5	8	11
s = 2 (bound)	2	4	5	6	9
s = 3 (achieved)	2	3	3	4	4
s = 3 (bound)	2	2	3	3	4

• We need algorithmic countermeasures with formal proof of resistance.

- We need algorithmic countermeasures with formal proof of resistance.
- We need formal models fitting the physical reality of devices AND enabling relatively simple proofs.

- We need algorithmic countermeasures with formal proof of resistance.
- We need formal models fitting the physical reality of devices AND enabling relatively simple proofs.
- Countermeasures must be efficient AND resistant against powerful adversaries.

- We need algorithmic countermeasures with formal proof of resistance.
- We need formal models fitting the physical reality of devices AND enabling relatively simple proofs.
- Countermeasures must be efficient AND resistant against powerful adversaries.
- Links with many other rich fields: ECC, MPC, efficient processing in short characteristic, etc.

- We need algorithmic countermeasures with formal proof of resistance.
- We need formal models fitting the physical reality of devices AND enabling relatively simple proofs.
- Countermeasures must be efficient AND resistant against powerful adversaries.
- Links with many other rich fields: ECC, MPC, efficient processing in short characteristic, etc.
- Many open issues...

- We need algorithmic countermeasures with formal proof of resistance.
- We need formal models fitting the physical reality of devices AND enabling relatively simple proofs.
- Countermeasures must be efficient AND resistant against powerful adversaries.
- Links with many other rich fields: ECC, MPC, efficient processing in short characteristic, etc.
- Many open issues...
 - Improve proof techniques (automatize them?)

- We need algorithmic countermeasures with formal proof of resistance.
- We need formal models fitting the physical reality of devices AND enabling relatively simple proofs.
- Countermeasures must be efficient AND resistant against powerful adversaries.
- Links with many other rich fields: ECC, MPC, efficient processing in short characteristic, etc.
- Many open issues...
 - Improve proof techniques (automatize them?)
 - ▶ Improve existing techniques / adapt them to the SCA context

- We need algorithmic countermeasures with formal proof of resistance.
- We need formal models fitting the physical reality of devices AND enabling relatively simple proofs.
- Countermeasures must be efficient AND resistant against powerful adversaries.
- Links with many other rich fields: ECC, MPC, efficient processing in short characteristic, etc.
- Many open issues...
 - Improve proof techniques (automatize them?)
 - ▶ Improve existing techniques / adapt them to the SCA context
 - ▶ Reduce the randomness consumption of existing techniques

- We need algorithmic countermeasures with formal proof of resistance.
- We need formal models fitting the physical reality of devices AND enabling relatively simple proofs.
- Countermeasures must be efficient AND resistant against powerful adversaries.
- Links with many other rich fields: ECC, MPC, efficient processing in short characteristic, etc.
- Many open issues...
 - Improve proof techniques (automatize them?)
 - ▶ Improve existing techniques / adapt them to the SCA context
 - ▶ Reduce the randomness consumption of existing techniques
 - Find Efficient Evaluation methods
 - ▶ ...

Thank you for your attention! Questions/Remarks?

