
Template Attacks vs. Machine Learning Revisited

(and the Curse of Dimensionality in Side-Channel Analysis)

Liran Lerman1, Romain Poussier2, Gianluca Bontempi1,
Olivier Markowitch1 and François-Xavier Standaert2

1 Département d’informatique, Université Libre de Bruxelles.
2 ICTEAM/INGI, Université catholique de Louvain, Belgium.

Abstract. Template attacks and machine learning are two popular ap-
proaches to profiled side-channel analysis. In this paper, we aim to con-
tribute to the understanding of their respective strengths and weak-
nesses, with a particular focus on their curse of dimensionality. For this
purpose, we take advantage of a well-controlled simulated experimental
setting in order to put forward two important intuitions. First and from
a theoretical point of view, the data complexity of template attacks is
not sensitive to the dimension increase in side-channel traces given that
their profiling is perfect. Second and from a practical point of view, con-
crete attacks are always affected by (estimation and assumption) errors
during profiling. As these errors increase, machine learning gains interest
compared to template attacks, especially when based on random forests.

1 Introduction

In a side-channel attack, an adversary targets a cryptographic device that emits
a measurable leakage depending on the manipulated data and/or the executed
operations. Typical examples of physical leakages include the power consump-
tion [15], the processing time [14] and the electromagnetic emanation [9].

Evaluating the security level of cryptographic implementations is an im-
portant concern, e.g. for modern smart cards. In this respect, profiled attacks
are useful tools, since they can be used to approach their worst-case security
level [24]. Such attacks essentially work in two steps: first a leakage model
is estimated during a so-called profiling phase, then the leakage model is ex-
ploited to extract key-dependent information in an online phase. Many different
approaches to profiling have been introduced in the literature. Template At-
tacks (TA), e.g. based on a Gaussian assumption [4], are a typical example.
The stochastic approach exploiting Linear Regression (LR) is a frequently con-
sidered alternative [22]. More recently, solutions relying on Machine Learning
(ML) have also been investigated [2, 11, 13, 12, 16, 17, 19]. These previous works
support the claim that ML-based attacks are effective and lead to successful key
recoveries. This is natural since they essentially exploit the same discriminating
criteria as TA and LR (i.e. a difference in the mean traces corresponding to dif-
ferent intermediate computations if an unprotected implementation is targeted

– a difference in higher-order statistical moments if the device is protected with
masking). By contrast, it remains unclear whether ML can lead to more efficient
attacks, either in terms of profiling or in terms of online key recovery. Previous
publications conclude in one or the other direction, depending on the implemen-
tation scenario considered, which is inherent to such experimental studies.

In this paper, we aim to complement these previous works with a more sys-
tematic investigation of the conditions under which ML-based attacks may out-
perform TA (or not)1. For this purpose, we start with the general intuition that
ML-based approaches are generally useful in order to deal with high-dimensional
data spaces. Following, our contributions are twofold. First, we tackle the (the-
oretical) question whether the addition of useless (i.e. non-informative) leakage
samples in leakage traces has an impact on their informativeness if a perfect
profiling phase is achieved. We show that the (mutual) information leakage esti-
mated with a TA exploiting such a perfect model is independent of the number
of useless dimensions if the useless leakage samples are independent of the useful
ones. This implies that ML-based attacks cannot be more efficient than tem-
plate attacks in the online phase if the profiling is sufficient. Second, we study
the practical counterpart of this question, and analyze the impact of imperfect
profiling on our conclusions. For this purpose, we rely on a simulated experimen-
tal setting, where the number of (informative and useless) dimensions is used
as a parameter. Using this setting, we evaluate the curse of dimensionality for
concrete TA and compare it with ML-based attacks exploiting Support Vector
Machines (SVM) and Random Forests (RF). That is, we considered SVM as a
popular tool in the field of side-channel analysis, and RF as an interesting al-
ternative (since its random feature selection makes its behavior quite different
than TA and SVM). Our experiments essentially conclude that TA outperform
ML-based attacks whenever the number of dimensions can be kept reasonably
low, e.g. thanks to a selection of Points of Interests (POI), and that ML (and
RF in particular) become(s) interesting in “extreme” profiling conditions (i.e.
with large traces and a small profiling sets) – which possibly arise when little
information about the target device is available to the adversary.

As a side remark, we also observe that most current ML-based attacks
rate key candidates according to (heuristic) scores rather than probabilities.
This prevents the computation of probability-based metrics (such as the mu-
tual/perceived information [20]). It may also have an impact on the efficiency of
key enumeration [25], which is an interesting scope for further investigation.

The rest of the paper is organized as follows. Section 2 contains notations,
the attacks considered, our experimental setting and evaluation metrics. Sec-
tion 3 presents our theoretical result on the impact of non-informative leakage
samples in perfect profiling conditions. Section 4 discusses practical (simulated)
experiments in imperfect profiling conditions, in different contexts. Eventually,
Section 5 concludes the paper and discusses perspectives of future work.

1 Note that the gain of LR-based attacks over TA is known and has been analyzed,
e.g. in [10, 23]. Namely, it essentially depends on the size of the basis used in LR.

2 Background

2.1 Notations

We use capital letters for random variables and small caps for their realizations.
We use sans serif font for functions (e.g. F) and calligraphic fonts for sets (e.g.
A). We denote the conditional probabilitiy of a random variable A given B with
Pr [A|B] and use the acronym SNR for the signal-to-noise ratio.

2.2 Template Attacks

Let lx,k be a leakage trace measured on a cryptographic device that manipulates
a target intermediate value v = f(x, k) associated to a known plaintext (byte) x
and a secret key (byte) k. In a TA, the adversary first uses a set of profiling traces

Lp in order to estimate a leakage model, next denoted as P̂rmodel

[
lx,k | θ̂x,k

]
,

where θ̂x,k represents the (estimated) parameters of the leakage Probability Den-
sity Function (PDF). The set of profiling traces is typically obtained by mea-
suring a device that is similar to the target, yet under control of the adversary.
Next, during the online phase, the adversary uses a set of new attack traces La
(obtained by measuring the target device) and selects the secret key (byte) k̃
maximizing the product of posterior probabilities:

k̃ = argmax
k∗

∏
lx,k∈La

P̂rmodel

[
lx,k | θ̂x,k∗

]
· Pr[k∗]

P̂rmodel[lx,k]
· (1)

Concretely, the seminal TA paper suggested to use Gaussian estimations for the
leakage PDF [4]. We will follow a similar approach and consider a Gaussian

(simulated) experimental setting. It implies that the parameters θ̂x,k correspond

to mean vectors µ̂x,k and covariance matrices Σ̂x,k. However, we note that any
other PDF estimation could be considered by the adversary/evaluator [8]. We
will further consider two types of TA: in the Naive Template Attack (NTA), we
will indeed estimate one covariance matrix per intermediate value; in the Efficient
Template Attack (ETA), we will pool the covariance estimates (assumed to be
equal) across all intermediate values, as previously suggested in [5].

In the following, we will keep the lx,k and v notations for leakage traces and
intermediate values, and sometimes omit the subscripts for simplicity.

2.3 Support Vector Machines

In their basic (two-classes) context, SVM essentially aims at estimating Boolean
functions [6]. For this purpose, it first performs a supervised learning with labels
(e.g. v = −1 or v = 1), annotating each sample of the profiling set. The binary

SVM estimates a hyperplane y = ŵ>l + b̂ that separates the two classes with

the largest possible margin, in the geometrical space of the vectors. Then in the
attack phase, any new trace l will be assigned a label ṽ as follows:

ṽ =

{
1 (ŵ>l + b̂) ≥ 1,

−1 otherwise.
(2)

Mathematically, SVM finds the parameters ŵ ∈ Rns (where ns is the number of

time samples per trace) and b̂ ∈ R by solving the convex optimization problem:

min
w,b

1

2
(w>w),

subject to v(w>φ(lv) + b) ≥ 1,

(3)

where φ denotes a projection function that maps the data into a higher (some-
times infinite) dimensional space usually denoted as the feature space. Our ex-
periments considered a Radial Basis kernel Function φ (RBF), which is a com-
monly encountered solution, both in the machine learning field and the side-
channel communities. The RBF kernel maps the traces into an infinite dimen-
sional Hilbert space in order to find a hyperplane that efficiently discriminate the
traces. It is defined by a parameter γ that essentially relates to the “variance”
of the model. Roughly, the variance of a model is a measure on the variance of
its output in function of the variance of the profiling set. The higher the value
of γ, the lower the variance of the model is. Intuitively, the variance of a model
therefore relates to its complexity (e.g. the higher the number of points per trace,
the higher the variance of the model). We always selected the value of γ as one
over the number of points per trace, which is a natural choice to compensate
the increase of the model variance due to the increase of the number of points
per trace. Future works could focus on other strategies to select this parameter,
although we do not expect them to have a strong impact on our conclusions.

When the problem of Equation 3 is feasible with respect to the constraints,
the data is said to be linearly separable in the feature space. As the problem
is convex, there is a guarantee to find a unique global minimum. SVM can be
generalized to multi-class problems (which will be useful in our context with typ-
ically 256 target intermediate values) and produce scores for intermediate values
based on the distance to the hyperplane. In our experiments, we considered the
“one-against-one” approach. In a one-against-one strategy, the adversary builds
one SVM for each possible pair of target values. During the attack phase, the
adversary selects the target value with a majority vote among the set of SVMs.
Because of place constraints, we refer to [7] for a complete explanation.

2.4 Random Forests

Decision trees are classification models that use a set of binary rules to calculate
a target value. They are structured as diagrams made of nodes and directed
edges, where nodes can be of three types: root (i.e. the top node in the tree),
internal (represented by a circle in Figure 1) and leaf (represented by a square

in Figure 1). In our side-channel context, we typically consider decision trees
in which (1) the value associated to a leaf is a class label corresponding to the
target to be recovered, (2) each edge is associated to a test on the value of a
time sample in the leakage traces, and (3) each internal node has one incoming
edge from a node called the parent node, as also represented in Figure 1.

In the profiling phase, learning data is used to build the model. For this pur-
pose, the learning set is first associated to the root. Then, this set is split based
on a time sample that most effectively discriminates the sets of traces associated
to different target intermediate values. Each subset newly created is associated
with a child node. The tree generator repeats this process on each derived sub-
set in a recursive manner, until the child node contains traces associated to the
same target value or the gain to split the subset is less than some threshold.
That is, it essentially determines at which time sample to split, the value of the
split, and the decision to stop or to split again. It then assigns terminal nodes
to a class (i.e. intermediate value). Next, in the attack phase, the model simply
predicts the target intermediate value by applying the classification rules to the
new traces to classify. We refer to [21] for more details on decision trees.

t1 t2 t3

3.1
3.2
3.3

l(t1) < 3.4

t4

1
l(t1) < 3.2

0

rootclass: 0
 13.4

l(t3) < 3.23

1 0time

le
ak

ag
e

Fig. 1: Decision tree with two classes (l(t1) is the leakage at time t1).

The Random Forests (RF) introduced by Breiman can be seen as a collection
of classifiers using many (unbiased) decision trees as models [3]. It relies on model
averaging (aka bagging) that leads to have a low variance of the resulting model.
After the profiling phase, RF returns the most consensual prediction for a target
value through a majority vote among the set of trees. RF are based on three
main principles. First, each tree is constructed with a different learning set by
re-sampling (with replacement) the original dataset. Secondly, the nodes of the
trees are split using the best time sample among a subset of randomly chosen
ones (by contrast to conventional trees where all the time samples are used).
The size of this subset was set to the square of the number of time samples
(i.e.
√
ns) as suggested by Breiman. These features allow obtaining decorrelated

trees, which improves the accuracy of the resulting RF model. Finally, and unlike
conventional decision trees as well, the trees of a RF are fully grown and are not

pruned, which possibly leads to overfitting (i.e. each tree has a low bias but a high
variance) that is reduced by averaging the trees. The main (meta-) parameters
of a RF are the number of trees. Intuitively, increasing the number of trees
reduces the instability (aka variance) of the models. We set this number to 500
by default, which was sufficient in our experiments in order to show the strength
of this model compared to template attack. We leave the detailed investigation
of these parameters as an interesting scope for further research.

2.5 Experimental setting

Let lp,k (t) be the t-th time sample of the leakage trace lp,k. We consider contexts
where each trace lp,k represents a vector of ns samples, that is:

lp,k = {lp,k (t) ∈ R | t ∈ [1;ns]} . (4)

Each sample represents the output of a leakage function. The adversary has
access to a profiling set of Np traces per target intermediate value, in which
each trace has d informative samples and u uninformative samples (with d +
u = ns). The informative samples are defined as the sum of a deterministic
part representing the useful signal (denoted as δ) and a random Gaussian part
representing the noise (denoted as ε), that is:

lp,k (t) = δt (p, k) + εt, (5)

where the noise is independent and identically distributed for all t’s. In our
experiments, the deterministic part δ corresponds to the output of the AES
S-box, iterated for each time sample and sent through a function G, that is:

δt (p, k) = G
(
SBoxt (p⊕ k)

)
, (6)

where:

SBox1 (p⊕ k) = SBox (p⊕ k) ,

SBoxt (p⊕ k) = SBox
(
SBoxt−1 (p⊕ k)

)
.

Concretely, we considered a function G that is a weighted sum of the S-box out-
put bits. However, all our results can be generalized to other functions (prelim-
inary experiments did not exhibit any deviation with highly non-linear leakage
functions – which is expected in a first-order setting where the leakage informa-
tiveness essentially depends on the SNR [18]). We set our signal variance to 1
and used Gaussian distributed noise variables εt with mean 0 and variance σ2

(i.e. the SNR was set to 1
σ2). Eventually, uninformative samples were simply gen-

erated with only a noisy part. This simulated setting is represented in Figure 2
and its main parameters can be summarized as follows:

– Number of informative points per trace (denoted as d),
– Number of uninformative points per trace (denoted as u),

– Number of profiling traces per intermediate value (denoted as Np),
– Number of traces in the attack step (noted Na),
– Noise variance (denoted as σ2) and SNR.

xor

Plaintext

Key

Sbox

Sample 1

Sbox ... Sbox

addition

0 0

deterministic
part

Sample d

addition

Sample d+1

addition

Sample d+u

addition

deterministic
part

noise noise noise noise

...

Fig. 2: Simulated leaking implementations.

2.6 Evaluation metrics

The efficiency of side-channel attacks can be quantified according to various
metrics. We will use information theoretic and security metrics advocated in [24].

Success rate (SR). For an attack targeting a subkey (e.g. a key byte) and
allowing to sort the different candidates, we define the success rate of order o as
the probability that the correct subkey is ranked among the first o candidates.
The success rate is generally computed in function of the number of attack traces
Na (given a model that has been profiled using Np traces). In the rest of this
paper, we focus on the success rate of order 1 (i.e. the correct key rated first).

Perceived/Mutual information (PI/MI). Let X,K,L be random variables
representing a target key byte, a known plaintext and a leakage trace. The
perceived information between the key and the leakage is defined as [20]:

P̂I(K;X,L) = H(K) +
∑
k∈K

Pr[k]
∑
x∈X

Pr[x]
∑
l∈L

Prchip[l|x, k] · log2 P̂rmodel[k|x, l].

The PI measures the adversary’s ability to interpret measurements coming from
the true (unknown) chip distribution Prchip[l|x, k] with an estimated model

P̂rmodel[l|x, k]. Prchip[l|x, k] is generally obtained by sampling the chip distribu-
tion (i.e. making measurement). Of particular interest for the next section will
be the context of perfect profiling, where we assume that the adversary’s model
and the chip distribution are identical (which, strictly speaking, can only happen

in simulated experimental settings since any profiling based on real traces will
at least be imperfect because of small estimation errors [8]). In this context, the
estimated PI will exactly correspond to the (worst-case) estimated MI.

Information theoretic metrics such as the MI/PI are especially interesting
for the comparison of profiled side-channel attacks as we envision here. This is
because they can generally be estimated based on a single plaintext (i.e. with
Na = 1) whereas the success rate is generally estimated for varying Na’s. In other
words, their scalar value provides a very similar intuition as the SR curves [23].
Unfortunately, the estimation of information theoretic metrics requires distin-
guishers providing probabilities, which is not the case of ML-based attacks2. As
a result, our concrete experiments comparing TA, SVM and RF will be based
on estimations of the success rate for a number of representative parameters.

3 Perfect profiling

In this section, we study the impact of useless samples in leakage traces on the
performances of TA with perfect profiling (i.e. the evaluator perfectly knows the
leakages’ PDF). In this context, we will use Pr for both Prmodel and Prchip (since
they are equal) and omit subscripts for the leakages l to lighten notations.

Proposition 1. Let us assume two TA with perfect models using two different
attack traces l1 and l2 associated to the same plaintext x: l1 is composed of d
samples providing information and l2 = [l1||ε] (where ε = [ε1, ..., εu] represents
noise variables independent of l1 and the key.). Then the mutual information
leakage MI(K;X,L) estimated with their (perfect) leakage models is the same.

Proof. As clear from the definitions in Section 2.6, the mutual/perceived infor-
mation estimated thanks to TA only depend on Pr[k|l]. So we need to show
that these conditional probabilities Pr[k|l2] and Pr[k|l1] are equal. Let k and k′

represent two key guesses. Since ε is independent of l1 and k, we have:

Pr[l2|k′]
Pr[l2|k]

=
Pr[l1|k′] · Pr[ε|k′]
Pr[l1|k] · Pr[ε|k]

,

=
Pr[l1|k′] · Pr[ε]

Pr[l1|k] · Pr[ε]
,

=
Pr[l1|k′]
Pr[l1|k]

. (7)

2 There are indeed variants of SVM and RF that aim to remedy to this issue. Yet, the
“probability-like” scores they output are not directly exploitable in the estimation of
information theoretic metrics either. For example, we could exhibit examples where
probability-like scores of one do not correspond to a success rate of one.

This directly leads to:∑
k′∈K Pr[l2|k′]

Pr[l2|k]
=

∑
k′∈K Pr[l1|k′]

Pr[l1|k]
,

Pr[l2|k]∑
k′∈K Pr[l2|k′]

=
Pr[l1|k]∑

k′∈K Pr[l1|k′]
,

Pr[k|l2] = Pr[k|l1], (8)

which concludes the proof.

Quite naturally, this proof does not hold as soon as there are dependencies
between the d first samples in l1 and the u latter ones. This would typically
happen in contexts where the noise at different time samples is correlated (which
could then be exploited to improve the attack). Intuitively, this simple result
suggests that in case of perfect profiling, the detection of POI is not necessary
for a TA, since useless points will not have any impact on the attack’s success.
Since TA are optimal from an information theoretic point-of-view, it also means
that the ML-based approaches cannot be more efficient in this context.

Note that the main reason why we need a perfect model for the result to hold
is that we need the independence between the informative and non-informative
samples to be reflected in these models as well. For example, in the case of Gaus-
sian templates, we need the covariance terms that corresponds to the correlation
between informative and non-informative samples to be null (which will not hap-
pen for imperfectly estimated templates). In fact, the result would also hold for
imperfect models, as long as these imperfections do not suggest significant cor-
relation between these informative and non-informative samples. But of course,
we could not state that TA necessarily perform better than ML-based attacks in
this case. Overall, this conclusion naturally suggests a more pragmatic question.
Namely, perfect profiling never occurs in practice. So how does this theoretical
intuition regarding the curse of dimensionality for TA extend to concrete profiled
attack (with bounded profiling phases)? We study it in the next section.

4 Experiments with imperfect profiling

We now consider examples of TA, SVM- and RF-based attacks in order to gain
intuition about their behavior in concrete profiling conditions. As detailed in
Section 2, we will use a simulated experimental setting with various number of
informative and uninformative samples in the leakage traces for this purpose.

4.1 Nearly perfect profiling

As a first experiment, we considered the case where the profiling is “sufficient”
– which should essentially confirm the result of Proposition 1. For this purpose,
we analyzed simulated leakage traces with 2 informative points (i.e. d = 2),
u = 0 and u = 15 useless samples, and a SNR of 1, in function of the number of

traces per intermediate value in the profiling set Np. As illustrated in Figure 3,
we indeed observe that (e.g.) the PI is independent of u if the number of traces
in the profiling set is “sufficient” (i.e. all attacks converge towards the same PI
in this case). By contrast, we notice that this “sufficient” number depends on
u (i.e. the more useless samples, the larger Np needs to be). Besides, we also
observe that the impact of increasing u is stronger for NTA than ETA, since the
first one has to deal with a more complex estimation. Indeed, the ETA has 256
times more traces than the NTA to estimate the covariance matrice. So overall,
and as expected, as long a the profiling set is large enough and the assumptions
used to build the model capture the leakage samples sufficiently accurately, TA
are indeed optimal, independent of the number of samples they actually profile.
So there is little gain to expect from ML-based approaches in this context.

1 5 10 50 100 500

0.0

0.2

0.4

0.6

0.8

1.0

1.2

number of profiling traces per intermediate value

pe
rc

ei
ve

d
in

fo
rm

at
io

n

ETA_u=0
NTA_u=0

ETA_u=15
NTA_u=15

Fig. 3: Perceived information for NTA and ETA in function of Np with SNR=1.

4.2 Imperfect profiling

We now move to the more concrete case were profiling is imperfect. In our simu-
lated setting, imperfections naturally arise from limited profiling (i.e. estimation
errors): we will investigate their impact next and believe they are sufficient to put
forward some useful intuitions regarding the curse of dimensionality in (profiled)
side-channel attacks. Yet, we note that in general, assumption errors can also
lead to imperfect models, that are more difficult to deal with (see, e.g. [8]) and
are certainly worth further investigations. Besides, and as already mentioned,
since we now want to compare TA, SVM and RF, we need to evaluate and com-
pare them with security metrics (since the two latter ones do not output the
probabilities required to estimate information theoretic metrics).

In our first experiment, we set again the number of useful dimensions to d = 2
and evaluated the success rate of the different attacks in function of the number
of non-informative samples in the leakages traces (i.e. u), for different sizes of the

profiling set. As illustrated in Figure 4, we indeed observe that for a sufficient
profiling, ETA is the most efficient solution. Yet, it is also worth observing that
NTA provides the worst results overall, which already suggests that comparisons
are quite sensitive to the adversary/evaluator’s assumptions. Quite surprisingly,
our experimental results show that up to a certain level, the success rate of RF
increases with the number of points without information. The reason is intrinsic
to the RF algorithm in which the trees need to be as decorrelated as possible. As
a result, increasing the number of points in the leakage traces leads to a better
independence between trees and improves the success rate. Besides, the most
interesting observation relates to RF in high dimensionality, which remarkably
resists the addition of useless samples (compared to SVM and TA). The main
reason for this behavior is the random feature selection embedded into this tool.
That is, for a sufficient number of trees, RF eventually detects the informative
POI in the traces, which makes it less sensitive to the increase of u. By contrast,
TA and SVM face a more and more difficult estimation problem in this case.

0 50 100 150 200 250

0.0

0.2

0.4

0.6

0.8

1.0

1.2

number of non−informative points

su
cc

es
s

ra
te

RF_Np=50
RF_Np=100
SVM_Np=50

SVM_Np=100
ETA_Np=50
ETA_Np=100

ETA_Np=1000
NTA_Np=50
NTA_Np=1000

Fig. 4: Success rate for NTA, ETA, SVM and RF in fct. of the number of useless
samples u, for various sizes of the profiling set Np, with d = 2, SNR=1, Na = 15.

Another noticeable element of Figure 4 is that SVM and RF seem to be
bounded to lower success rates than TA. But this is mainly an artifact of using
the success rate as evaluation metric. As illustrated in Figure 5 increasing either
the number of informative dimensions in the traces d or the number of attack
traces Na leads to improved success rates for the ML-based approaches as well.
For the rest, the latter figure does not bring significantly new elements. We
essentially notice that RF becomes interesting over ETA for very large number
of useless dimensions and that ETA is most efficient otherwise.

Eventually, the interest of the random feature selection in RF-based mod-
els raises the question of the time complexity for these different attacks. That
is, such a random feature selection essentially works because there is a large

0 100 200 300 400 500

0.0

0.2

0.4

0.6

0.8

1.0

1.2

number of non−informative points

su
cc

es
s

ra
te

ETA
NTA

RF
SVM

(a)

0 100 200 300 400 500

0.0

0.2

0.4

0.6

0.8

1.0

1.2

number of non−informative points

su
cc

es
s

ra
te

ETA
NTA

RF
SVM

(b)

Fig. 5: (a) Success rate for NTA, ETA, SVM and RF in function of the number
of useless samples u, with parameters Np = 25, d = 5, SNR=1 and Na = 15. (b)
Similar experiment with parameters Np = 50 d = 2, SNR=1 and Na = 30.

enough number of trees in our RF models. But increasing this number naturally
increases the time complexity of the attacks. For this purpose, we report some
results regarding the time complexity of our attacks in Figure 6. As a preliminary
note, we mention that those results are based on prototype implementations in
different programming languages (C for TA, R for SVM and RF). So they should
only be taken as a rough indication. Essentially, we observe an overhead for the
time complexity of ML-based attacks, which vanishes as the size of the leakage
traces increases. Yet, and most importantly, this overhead remains comparable
for SVM and RF in our experiments (mainly due to the fact that the number
of trees was set to a constant 500). So despite the computational cost of these
attacks is not negligible, it remains tractable for the experimental parameters
we considered (and could certainly be optimized in future works).

5 Conclusion

Our results provide interesting insights on the curse of dimensionality for side-
channel attacks. From a theoretical point of view, we first showed that as long as
a limited number of POI can be identified in leakage traces and contain most of
the information, TA are the method of choice. Such a conclusion extends to any
scenario where the profiling can be considered as “nearly perfect”. By contrast,
we also observed that as the number of useless samples in leakage traces increases
and/or the size of the profiling set becomes too limited, ML-based attacks gain
interest. In our simulated setting, the most interesting gain is exhibited for RF-
based models, thanks to their random feature selection. Interestingly, the recent
work of Banciu et al. reached a similar conclusion in a different context, namely,
Simple Power Analysis and Algebraic Side-Channel Analysis [1].

0 10 20 30 40 50

number of non−informative points

pr
of

ili
ng

 ti
m

e
re

la
tiv

el
y

to
 T

A

1

5
10

50
100

500
1000

1e+05

1e+06
RF_d=2
SVM_d=2

RF_d=12
SVM_d=12

(a)

0 10 20 30 40 50

1

5

10

50

100

500

1000

5000

number of non−informative points

at
ta

ck
in

g
tim

e
re

la
tiv

el
y

to
 T

A

RF_d=2
SVM_d=2

RF_d=12
SVM_d=12

(b)

Fig. 6: Time complexity for ETA, SVM and RF in fct. of the number of useless
samples, for d = [2, 12] and Np = 25. (a) Profiling phase. (b) Attack phase.

Besides, and admittedly, the simulated setting we investigated is probably
most favorable to TA, since only estimation errors can decrease the accuracy of
the adversary/evaluator models in this case. One can reasonably expect that real
devices with harder to model noise distributions would improve the interest of
SVM compared to ETA – as has been suggested in previously published works.
As a result, the extension of our experiments towards other distributions is an
interesting avenue for further research. In particular, the study of leakage traces
with correlated noise could be worth additional investigations in this respect.
Meanwhile, we conclude with the interesting intuition that TA are most efficient
for well understood devices, with sufficient profiling, as they can approach the
worst-case security level of an implementation in such context. By contrast, ML-
based attacks (especially RF) are promising alternative(s) in black box settings,
with only limited understanding of the target implementation.

Acknowledgements. F.-X. Standaert is a research associate of the Belgian
Fund for Scientific Research (FNRS-F.R.S.). This work has been funded in parts
by the European Commission through the ERC project 280141 (CRASH).

References

1. Valentina Banciu, Elisabeth Oswald, and Carolyn Whitnall. Reliable information
extraction for single trace attacks. IACR Cryptology ePrint Archive, 2015:45, 2015.

2. Timo Bartkewitz and Kerstin Lemke-Rust. Efficient template attacks based on
probabilistic multi-class support vector machines. In Stefan Mangard, editor,
CARDIS, volume 7771 of Lecture Notes in Computer Science, pages 263–276.
Springer, 2012.

3. Leo Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

4. Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi. Template attacks. In Burton
S. Kaliski Jr., Çetin Kaya Koç, and Christof Paar, editors, CHES, volume 2523 of
Lecture Notes in Computer Science, pages 13–28. Springer, 2002.

5. Omar Choudary and Markus G. Kuhn. Efficient template attacks. In Aurélien
Francillon and Pankaj Rohatgi, editors, CARDIS, volume 8419 of Lecture Notes in
Computer Science, pages 253–270. Springer, 2013.

6. Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine Learning,
20(3):273–297, 1995.

7. Nello Cristianini and John Shawe-Taylor. An Introduction to Support Vector Ma-
chines and Other Kernel-based Learning Methods. Cambridge University Press,
2010.

8. François Durvaux, François-Xavier Standaert, and Nicolas Veyrat-Charvillon. How
to certify the leakage of a chip? In Phong Q. Nguyen and Elisabeth Oswald, editors,
EUROCRYPT, volume 8441 of Lecture Notes in Computer Science, pages 459–476.
Springer, 2014.

9. Karine Gandolfi, Christophe Mourtel, and Francis Olivier. Electromagnetic anal-
ysis: Concrete results. In Çetin Kaya Koç, David Naccache, and Christof Paar,
editors, CHES, volume 2162 of Lecture Notes in Computer Science, pages 251–
261. Springer, 2001.

10. Benedikt Gierlichs, Kerstin Lemke-Rust, and Christof Paar. Templates vs. stochas-
tic methods. In Louis Goubin and Mitsuru Matsui, editors, CHES, volume 4249
of Lecture Notes in Computer Science, pages 15–29. Springer, 2006.

11. Annelie Heuser and Michael Zohner. Intelligent machine homicide - breaking cryp-
tographic devices using support vector machines. In Werner Schindler and Sorin A.
Huss, editors, COSADE, volume 7275 of Lecture Notes in Computer Science, pages
249–264. Springer, 2012.

12. Gabriel Hospodar, Benedikt Gierlichs, Elke De Mulder, Ingrid Verbauwhede, and
Joos Vandewalle. Machine learning in side-channel analysis: a first study. J.
Cryptographic Engineering, 1(4):293–302, 2011.

13. Gabriel Hospodar, Elke De Mulder, Benedikt Gierlichs, Joos Vandewalle, and In-
grid Verbauwhede. Least Squares Support Vector Machines for Side-Channel Anal-
ysis. In Second International Workshop on Constructive Side-Channel Analysis and
Secure Design, pages 99–104. Center for Advanced Security Research Darmstadt,
2011.

14. Paul C. Kocher. Timing attacks on implementations of diffie-hellman, rsa, dss, and
other systems. In Neal Koblitz, editor, CRYPTO, volume 1109 of Lecture Notes
in Computer Science, pages 104–113. Springer, 1996.

15. Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In
Michael J. Wiener, editor, CRYPTO, volume 1666 of Lecture Notes in Computer
Science, pages 388–397. Springer, 1999.

16. Liran Lerman, Gianluca Bontempi, and Olivier Markowitch. Side-Channel Attacks:
an Approach Based on Machine Learning. In Second International Workshop on
Constructive Side-Channel Analysis and Secure Design, pages 29–41. Center for
Advanced Security Research Darmstadt, 2011.

17. Liran Lerman, Gianluca Bontempi, and Olivier Markowitch. Power analysis attack:
an approach based on machine learning. IJACT, 3(2):97–115, 2014.

18. Stefan Mangard, Elisabeth Oswald, and François-Xavier Standaert. One for all -
all for one: unifying standard differential power analysis attacks. IET Information
Security, 5(2):100–110, 2011.

19. Hiren Patel and Rusty O. Baldwin. Random forest profiling attack on advanced
encryption standard. IJACT, 3(2):181–194, 2014.

20. Mathieu Renauld, François-Xavier Standaert, Nicolas Veyrat-Charvillon, Dina
Kamel, and Denis Flandre. A formal study of power variability issues and side-
channel attacks for nanoscale devices. In Kenneth G. Paterson, editor, EURO-
CRYPT, volume 6632 of Lecture Notes in Computer Science, pages 109–128.
Springer, 2011.

21. Lior Rokach and Oded Maimon. Data Mining with Decision Trees: Theory and Ap-
plications. Series in machine perception and artificial intelligence. World Scientific
Publishing Company, Incorporated, 2008.

22. Werner Schindler, Kerstin Lemke, and Christof Paar. A stochastic model for dif-
ferential side channel cryptanalysis. In Josyula R. Rao and Berk Sunar, editors,
CHES, volume 3659 of Lecture Notes in Computer Science, pages 30–46. Springer,
2005.

23. François-Xavier Standaert, François Koeune, and Werner Schindler. How to com-
pare profiled side-channel attacks? In Michel Abdalla, David Pointcheval, Pierre-
Alain Fouque, and Damien Vergnaud, editors, ACNS, volume 5536 of Lecture Notes
in Computer Science, pages 485–498, 2009.

24. François-Xavier Standaert, Tal Malkin, and Moti Yung. A unified framework for
the analysis of side-channel key recovery attacks. In Antoine Joux, editor, EU-
ROCRYPT, volume 5479 of Lecture Notes in Computer Science, pages 443–461.
Springer, 2009.

25. Nicolas Veyrat-Charvillon, Benôıt Gérard, Mathieu Renauld, and François-Xavier
Standaert. An optimal key enumeration algorithm and its application to side-
channel attacks. In Lars R. Knudsen and Huapeng Wu, editors, Selected Areas in
Cryptography, volume 7707 of Lecture Notes in Computer Science, pages 390–406.
Springer, 2012.

