Fault-based Cryptanalysis on Block Ciphers

Victor LOMNE

LIRMM / university of Montpellier

COSADE 2017, Thursday April 13 2017, Paris, France

Outline

Fault Injection Means

- Fault Zoology
- Global Effect Faults
- Local Effect Faults
- Other Tools

2 Cryptanalysis methods

- Fault Model
- Safe Error Attack
- DFA
- Statistical Fault Attack

3 Countermeasures

- Analog Level
- Digital Level
- Application to Crypto

Fault Injection Means

Cryptanalysis methods Countermeasures Conclusion Fault Zoology Global Effect Faults Local Effect Faults Other Tools

Agenda

1 Fault Injection Means

- Fault Zoology
- Global Effect Faults
- Local Effect Faults
- Other Tools

2 Cryptanalysis methods

- Fault Model
- Safe Error Attack
- DFA
- Statistical Fault Attack

3 Countermeasures

- Analog Level
- Digital Level
- Application to Crypto

Fault Zoology Global Effect Faults Local Effect Faults Other Tools

Fault Zoology (1/2)

- Different ways to generate a fault:
 - $\bullet~$ Under /~ over-powering the IC
 - Tamper with the IC clock
 - Light injection
 - ElectroMagnetic (EM) field injection
 - Physical modification of the IC e.g. laser cutter, FIB
 - Software induced fault e.g. overclocking, register / memory modification

4/62

Fault Zoology Global Effect Faults Local Effect Faults Other Tools

Fault Zoology (2/2)

- The duration of the fault can be:
 - Transient
 - Permanent
- Different effects:
 - Modification of operation flow
 - Modification of operands
- Different goals:
 - Bypassing a security mechanism PIN verification, file access right control, secure bootchain, ...
 - Generating faulty encryptions/signatures
 ⇒ fault-based cryptanalysis
 - Combined Attacks JavaCard based, FA + SCA

5/ 62

Fault Injection Means

Cryptanalysis methods Countermeasures Conclusion Fault Zoology Global Effect Faults Local Effect Faults Other Tools

Agenda

Fault Injection Means

Fault Zoology

Global Effect Faults

- Local Effect Faults
- Other Tools

2 Cryptanalysis methods

- Fault Model
- Safe Error Attack
- DFA
- Statistical Fault Attack

3 Countermeasures

- Analog Level
- Digital Level
- Application to Crypto

Fault Zoology Global Effect Faults Local Effect Faults Other Tools

Under / Over-powering the IC (1/3)

- Under/over-power an IC during a very short time
- Over-powering cause unexpected electrical phenomenoms inside the IC *e.g. local shortcuts*
- Under-powering slows down the processing of the IC e.g. bad memory read/write, bad coprocessor execution

• Low / medium-cost attack e.g. power supply, pulse generator, custom electronic board

Fault Zoology Global Effect Faults Local Effect Faults Other Tools

Under / Over-powering the IC (2/3)

- Adversary can control:
 - Amplitude of the glitch
 - Duration of the glitch
 - Shape of the glitch
- Generally no control of the fault precision:
 - On a microcontroller running code, modification of the current executed opcode and/or operand(s)
 - On a hardware coprocessor, modification of (some of) the current processed word(s) (e.g. registers)

Fault Zoology Global Effect Faults Local Effect Faults Other Tools

Under / Over-powering the IC (3/3)

- Recent variant [Tobich+ 2012]: BBI: Body Bias Injection
- Consist in putting a needle in contact with the IC silicon through its backside

Fault Zoology Global Effect Faults Local Effect Faults Other Tools

Tamper with the clock (1/2)

- Reduce one or several clock period(s) feeding the IC
- Accelerates the processing of the IC e.g. DFF sampling before correct computation of current instruction / combinational logic
- Low / medium-cost attack e.g. signal generator, custom electronic board

10/ 62

Fault Zoology Global Effect Faults Local Effect Faults Other Tools

Tamper with the clock (2/2)

- Adversary can control:
 - Duration of the reduced clock period
 - Number of reduced clock period(s)
- Generally no control of the fault precision:
 - On a microcontroller running code, modification of the current executed opcode and/or operand(s)
 - On a hardware coprocessor, modification of (some of) the current processed word(s) (e.g. registers)

Fault Injection Means

Cryptanalysis methods Countermeasures Conclusion Fault Zoology Global Effect Faults Local Effect Faults Other Tools

Agenda

Fault Injection Means

- Fault Zoology
- Global Effect Faults

Local Effect Faults

Other Tools

2 Cryptanalysis methods

- Fault Model
- Safe Error Attack
- DFA
- Statistical Fault Attack

3 Countermeasures

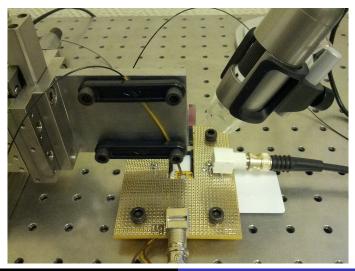
- Analog Level
- Digital Level
- Application to Crypto

Fault Zoology Global Effect Faults Local Effect Faults Other Tools

Light based Fault Injection (1/2)

- Inject a light beam into the IC
- A photoelectric phenomenom transforms light energy into electrical energy, provoking unexpected behaviour of transistors
- Old school setups were using flash lamp
- Modern setups are based on laser modules
- Medium / high-cost attack

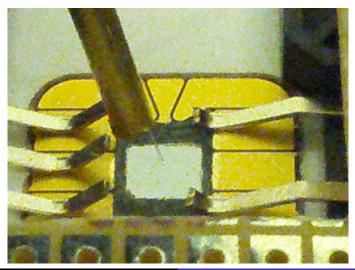
e.g. pulse generator, laser diode module, motorized X-Y-Z stage, optical microscope


Fault Zoology Global Effect Faults Local Effect Faults Other Tools

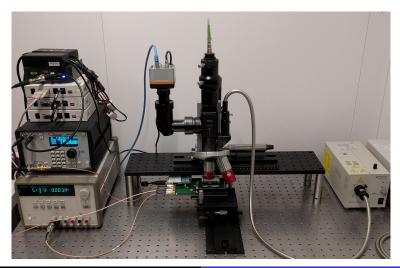
Light based Fault Injection (2/2)

- Requires to open the package of the IC in order the light beam can be injected into the frontside or the backside of the die
- On complex ICs with many metal layers, or on *secure* ICs with anti-probing shield, it can be difficult to inject light on the frontside of the IC
- As silicon is transparent to infrared light, backside light injection uses infrared light

Fault Zoology Global Effect Faults Local Effect Faults Other Tools


Laser Setup example 1 (1/2)

Victor LOMNE Fault-based Cryptanalysis on Block Ciphers


Fault Zoology Global Effect Faults Local Effect Faults Other Tools

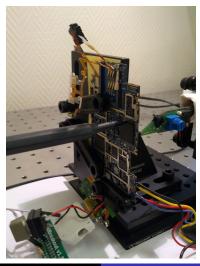
Laser Setup example 1 (2/2)

Fault Zoology Global Effect Faults Local Effect Faults Other Tools

Laser Setup example 2

Victor LOMNE Fault-based Cryptanalysis on Block Ciphers

Fault Zoology Global Effect Faults Local Effect Faults Other Tools


ElectroMagnetic Fault Injection (EMFI)

- Inject an electromagnetic field inside the IC
- Can be done without removing the package of the IC
- In practice, a glitch of high power is injected into an EM probe positionned above the IC
- Medium / high-cost attack

e.g. high power pulse generator, EMFI probe, motorized X-Y-Z stage


Fault Zoology Global Effect Faults Local Effect Faults Other Tools

ElectroMagnetic Injection Setup example (1/2)

Fault Zoology Global Effect Faults Local Effect Faults Other Tools

ElectroMagnetic Injection Setup example (2/2)

Fault Zoology Global Effect Faults Local Effect Faults Other Tools

Software Induced Faults

- White-Box cryptography is a concept where the key is hidden in the cryptographic implementation
- WBC usually used when several programs can run on the same device
- By running the binary program containing the WBC implem. over an emulator, it is possible to modify register values or memory access during its execution ⇒ software induced fault cryptanalysis (Sanfelix+ 2015, Alibert+ 2015)

Low-cost attack

e.g. computer, RE software

Fault Injection Means

Cryptanalysis methods Countermeasures Conclusion Fault Zoology Global Effect Faults Local Effect Faults Other Tools

Agenda

Fault Injection Means

- Fault Zoology
- Global Effect Faults
- Local Effect Faults
- Other Tools

2 Cryptanalysis methods

- Fault Model
- Safe Error Attack
- DFA
- Statistical Fault Attack

3 Countermeasures

- Analog Level
- Digital Level
- Application to Crypto

Fault Zoology Global Effect Faults Local Effect Faults Other Tools

Synchronization Mean

- In many cases, need of a synchronization mean to trig the fault at the right instant
- Classical method: monitoring power consumption / EM activity of the IC to find the side-channel signature of the event one wants disturb
- Several solutions:
 - Triggering capabilities of oscilloscopes
 - Real-time waveform-matching based triggering system *Beckers+ 2016*

Fault Model Safe Error Attack DFA Statistical Fault Attack

Agenda

Fault Injection Means

- Fault Zoology
- Global Effect Faults
- Local Effect Faults
- Other Tools

Cryptanalysis methods Fault Model

- Safe Error Attack
- DFA
- Statistical Fault Attack

3 Countermeasures

- Analog Level
- Digital Level
- Application to Crypto

Fault Model Safe Error Attack DFA Statistical Fault Attack

Classification of Fault Models

• One can define a Fault Model as a function *f* such that:

 $f: x \to x \star e \tag{1}$

x target variable, e fault logical effect and* a logical operation

- Any Fault-based Cryptanalysis requires an Invariant
 ⇒ new classification of FA based on the Invariant:
 - FA based on a Fixed Fault Diffusion Pattern Differential Fault Analysis [Biham+ 1997], [Piret+ 2003]
 - FA based on a Fixed Fault Logical Effect Safe Error Attacks [Biham+ 1997] Statistical Fault Attacks [Fuhr+ 2013]

Fault Model Safe Error Attack DFA Statistical Fault Attack

Agenda

Fault Injection Means

- Fault Zoology
- Global Effect Faults
- Local Effect Faults
- Other Tools

2 Cryptanalysis methods

- Fault Model
- Safe Error Attack
- DFA
- Statistical Fault Attack

3 Countermeasures

- Analog Level
- Digital Level
- Application to Crypto

Fault Model Safe Error Attack DFA Statistical Fault Attack

Safe Error Attack (SEA) [Biham+ 1997]

- Requires two copies of the target device:
 - a first copy that the adversary can fully control
 - a second copy set at an unknown secret
- Requires the ability to encrypt several times the same plaintext
- Does not require any faulty ciphertext
- SEA requires two phases:
 - a profiling phase
 - an attack phase

Fault Model Safe Error Attack DFA Statistical Fault Attack

Safe Error Attack (SEA) - Sketch

Profiling phase

- Use the device the adversary can fully control
- For every bit of the master key, find the fault parameters allowing to reset this bit
- Attack phase
 - Use the device set at an unknown secret
 - Encrypt a plaintext and keep the ciphertext
 - For every bit of the key, encrypt once again the same plaintext, while injecting a fault with parameters of profiling phase for the current bit
 - If both ciphertexts are equal, the current bit is equal to 0, otherwise equal to 1

Fault Model Safe Error Attack DFA Statistical Fault Attack

Agenda

Fault Injection Means

- Fault Zoology
- Global Effect Faults
- Local Effect Faults
- Other Tools

2 Cryptanalysis methods

- Fault Model
- Safe Error Attack

DFA

Statistical Fault Attack

3 Countermeasures

- Analog Level
- Digital Level
- Application to Crypto

Fault Model Safe Error Attack DFA Statistical Fault Attack

Differential Fault Analysis (DFA) [Biham+ 1997]

- Requires the ability to encrypt two times the same plaintext
- Requires to have one or several pairs of correct and wrong ciphertexts corresponding to the same plaintext

$$P_1 \to (C_1, \widetilde{C_1})$$

$$P_2 \to (C_2, \widetilde{C_2})$$
...

 $P_N \rightarrow (C_N, C_N)$

• Requires to be able to fault only a part of the **State** at a particular position in the encryption *e.g.* one byte of the AES State before the last MixColumns

Fault Model Safe Error Attack DFA Statistical Fault Attack

Differential Fault Analysis (DFA) - Sketch (1/2)

- Let's assume the fault modify one State byte before the last MixColumns, compute the list D of all possible differences after last MixColumns
- Consider two pairs of correct and faulty ciphertexts (C₁, C₁) and (C₂, C₂)
- Make an hypothesis on the 2 left most bytes of K, Kh^1, Kh^2 . For each of the 2¹⁶ candidates, compute: $\delta_{C_1} = S^{-1}(C_1^1 \oplus Kh^1, C_1^2 \oplus Kh^2) \oplus S^{-1}(\widetilde{C_1^1} \oplus Kh^1, \widetilde{C_1^2} \oplus Kh^2)$ $\delta_{C_2} = S^{-1}(C_2^1 \oplus Kh^1, C_2^2 \oplus Kh^2) \oplus S^{-1}(\widetilde{C_2^1} \oplus Kh^1, \widetilde{C_2^2} \oplus Kh^2)$

Fault Model Safe Error Attack DFA Statistical Fault Attack

Differential Fault Analysis (DFA) - Sketch (2/2)

- Compare the results with the 2 left-most bytes of the differences in D. The (Kh¹, Kh²) for which a match is found for both ciphertext pairs are stored in a list L
- For each candidate of L, try to extend it by one byte (computing both differences to check)
- Keep extending candidates in L until they are 16-bytes long.
 At this stage, only the right key is remaining

Fault Model Safe Error Attack DFA Statistical Fault Attack

Agenda

Fault Injection Means

- Fault Zoology
- Global Effect Faults
- Local Effect Faults
- Other Tools

2 Cryptanalysis methods

- Fault Model
- Safe Error Attack
- DFA

• Statistical Fault Attack

3 Countermeasures

- Analog Level
- Digital Level
- Application to Crypto

Fault Model Safe Error Attack DFA Statistical Fault Attack

Statistical Fault Attack (SFA) [Fuhr+ 2013]

- SFA has the property to work even with a set of faulty ciphertexts corresponding to different unknown plaintexts $P_1 \rightarrow \widetilde{C_1}$ $P_2 \rightarrow \widetilde{C_2}$ \cdots $P_{M} \rightarrow \widetilde{C_M}$
- Nevertheless it requires a Fixed Fault Logical Effect e.g. stuck-at a fixed value a **State** byte with a good probability
- SFA cannot be thwarted at the protocol level !!!

Fault Model Safe Error Attack DFA Statistical Fault Attack

Statistical Fault Attack (SFA) - Sketch (1/2)

- Collect a set of faulty AES ciphertexts C₁, C₂,..., C_N, by injecting a fault on one byte of the State after the penultimate AddRoundKey. We assume that the fault has a stuck-at effect to an unknown value e: S¹_{ak} = S¹_{ak} AND e, e ∈ [0, 255]
- A collection of correct ciphertext bytes C₁, C₂,..., C_N would have an uniform distribution
 Here, due to the stuck-at fault, the collection of faulted ciphertext bytes C₁, C₂,..., C_N has a biaised distribution

Fault Model Safe Error Attack DFA Statistical Fault Attack

Statistical Fault Attack (SFA) - Sketch (2/2)

- We can express S̃ak₉ⁱ as a function of C̃ⁱ and an hypothesis on one byte of K₁₀: S̃ak₉ⁱ = SB⁻¹ ∘ SR⁻¹(C̃ⁱ ⊕ K₁₀)
- **2** Use a distinguisher to discriminate the correct key hypothesis. For instance, use the Minimal mean Hamming weight: $h(\hat{K}) = \frac{1}{n} \sum_{i=1}^{n} HW(\hat{S}ak_{r}^{i}).$

Analog Level Digital Level Application to Crypto

Agenda

Fault Injection Means

- Fault Zoology
- Global Effect Faults
- Local Effect Faults
- Other Tools

2 Cryptanalysis methods

- Fault Model
- Safe Error Attack
- DFA
- Statistical Fault Attack

3 Countermeasures

Analog Level

- Digital Level
- Application to Crypto

Analog Level Digital Level Application to Crypto

(De)synchronization

- A fault injection requires a precise timing to be effective
- Adding temporal randomness makes the timing of the fault harder to set
- Classical ways to add temporal randomness:
 - jittered clock
 - dummy instructions
 - randomize operation flow
 - ...

Analog Level Digital Level Application to Crypto

Glitch Detectors

- The historical way to inject a fault in an IC is to under/over-power it during a short time
- Some IC manufacturers add glitch detectors after IC pads, checking that the current signal voltage stays in a defined range
- If a signal voltage goes outside from the defined range, a mechanism triggers an alarm *e.g. flag set, interruption, reset, ...*

Analog Level Digital Level Application to Crypto

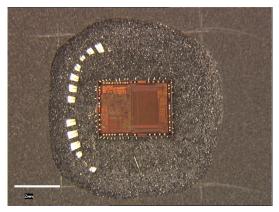
Laser Detectors (1/2)

- Laser injection often requires to only disturb a small IC area
- It requires to perform a spatial cartography to find hot spots CPU/co-processor registers, memory cells or decoders, ...
- Laser detectors that are small dedicated blocks are placed among the other IC cells

Analog Level Digital Level Application to Crypto

Laser Detectors (2/2)

- Different kind of Laser detectors:
 - analog based laser detectors *e.g.* based on photodiodes
 - digital based laser detectors e.g. based on custom logic cells
- Laser detectors do not cover the whole suface of the IC, but make the job of the adversary harder


Analog Level Digital Level Application to Crypto

IC Package as Countermeasure

- Several kind of fault injection techniques require to expose the die of the IC to perform the attack *BBI, laser, ...*
- Depending on the type of package, it can be more or less easy to expose the die:
 - smartcard packages are easy to open
 - metallic packages can be mechanically opened
 - epoxy packages require a chemical attack
 - Package-on-Package or 3D IC technology make the chip opening a nightmare

Analog Level Digital Level Application to Crypto

IC Package as Countermeasure: example 1

Epoxy package opened with fuming nitric acid (courtesy of C. Toulemont, SERMA)

Analog Level Digital Level Application to Crypto

IC Package as Countermeasure: example 2

Application processor with memory stacked above (courtesy of C. Toulemont, SERMA)

Analog Level Digital Level Application to Crypto

IC Package as Countermeasure: example 2

Application processor with memory stacked above - X-ray view (courtesy of C. Toulemont, SERMA)

Analog Level Digital Level Application to Crypto

Agenda

Fault Injection Means

- Fault Zoology
- Global Effect Faults
- Local Effect Faults
- Other Tools

2 Cryptanalysis methods

- Fault Model
- Safe Error Attack
- DFA
- Statistical Fault Attack

3 Countermeasures

Analog Level

Digital Level

Application to Crypto

4 Conclusion

Analog Level Digital Level Application to Crypto

Redundancy

- Redundancy consists in:
 - performing two times an operation
 - comparing results of both operation executions
 ⇒ require a conditionnal test
- From a code theory point-of-view, it corresponds to the most obvious code one can construct *duplication code*
- A variant consists in performing the operation and the inverse operation, then checking that the obtained result is equal to the initial data

Analog Level Digital Level Application to Crypto

Examples of Redundancy

- Redundancy can be used in different ways:
 - Sequential redundancy for a software function
 - Sequential or Parallel redundancy for a hardware function
 - Use of redundant logics WDDL, STTL, ...
 - Securization of special registers by duplication or by storing a value and its inverse
 2 flip-flops are necessary to store one bit

Analog Level Digital Level Application to Crypto

Error Detection Codes

 Error Detection Codes are efficient tools to check the integrity of data

• ECC well suited to protect linear operations they are based on linear applications

• ECC bad suited to protect non-linear operations in particular they are not well suited to protect cryptographic primitives

Analog Level Digital Level Application to Crypto

Examples of Error Detection Codes

- Error Correcting Codes can be used in different ways:
 - Ensure the integrity of a secret data stored in NVM
 - Protect a memory decoder \rightarrow ensure the integrity of opcodes
 - Protect linear parts of cryptographic algorithms

Analog Level Digital Level Application to Crypto

Infection

- Infection consists in mixing a diffusion scheme with the operation to protect such that:
 - if the processed data are not modified by a fault, the diffusion scheme has no effect on the final result
 - if the processed data are modified by a fault, the diffusion scheme expands the erroenous data such that the final result is no more exploitable by the adversary

Analog Level Digital Level Application to Crypto

Agenda

Fault Injection Means

- Fault Zoology
- Global Effect Faults
- Local Effect Faults
- Other Tools

2 Cryptanalysis methods

- Fault Model
- Safe Error Attack
- DFA
- Statistical Fault Attack

3 Countermeasures

- Analog Level
- Digital Level
- Application to Crypto

4 Conclusion

Analog Level Digital Level Application to Crypto

Classical Detection Schemes For Block Ciphers

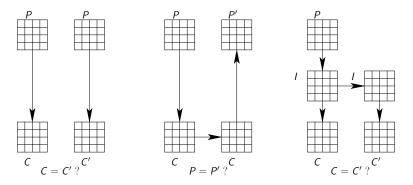
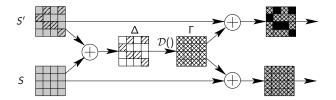



Figure: Three classical detection countermeasures. From left to right : Full Duplication, Encrypt/Decrypt, and Partial Duplication

Analog Level Digital Level Application to Crypto

Classical Infection Schemes For Block Ciphers

- Generic sketch exhibiting the Infection CM:
 - S, S' the two States
 - \mathcal{D} the diffusion function (such as $\mathcal{D}(0) = 0$)

Agenda

Fault Injection Means

- Fault Zoology
- Global Effect Faults
- Local Effect Faults
- Other Tools

2 Cryptanalysis methods

- Fault Model
- Safe Error Attack
- DFA
- Statistical Fault Attack

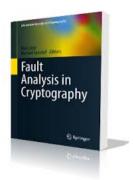
3 Countermeasures

- Analog Level
- Digital Level
- Application to Crypto

4 Conclusion

Conclusion (1/2)

- Fault Attacks are a very powerful attack path:
 - Allow to modify the normal behaviour of a HW or SW function
 - Allow to extract cryptographic secrets
- Recent trend: high order fault attack
 - Temporal multi-fault attack
 - Spatio-temporal multi-fault attack



- A lot of Fault Attack Countermeasures have been proposed in the litterature
- Generally mixed to increase the security level of the IC *principle of defense in depth*
- No countermeasure is perfect !
- A developper has firstly to define the level of the adversary he wants to thwart, and then choose the adequate tradeoff between efficiency and security

Certification Schemes

- Procedure to evaluate the security level of a product
- Three actors: the developper / the security lab / the scheme
- Some certification schemes:
 - Common Critera
 - EMVCo
 - ...

To go further

 book Fault Analysis in Cryptography Marc Joye and Michael Tunstall - SPRINGER

Questions ?

ocontact: victor.lomne@lirmm.fr

Bonus 1: Bug Attack

- Pentium FDIV bug was a bug in the Intel *P*5 Pentium floating point unit (FPU)
- Because of the bug, the processor would return incorrect results for many calculations
- Nevertheless, bug is hard to detect 1 in 9 billion floating point divides with random parameters would produce inaccurate results
- Shamir proposed a modified version of the Bellcore attack which exploits this bug to retrieve a RSA private key
- More dangerous than a classical fault attack because can be perfomed remotely

Bonus 2: PS3 Hack

- George Hotz (a.k.a. Geohot) published in 2009 a hack of the Sony PS3
- The otherOS functionnality of the PS3 allowed to boot a Linux OS
- A bus glitch allowed him to gain control of the hypervisor \Rightarrow ring 0 access
 - $\Rightarrow \mathsf{full} \text{ memory access}$
 - \Rightarrow control gain of the OS bootchain
- In consequence Sony took George Hotz to court
- Sony and Hotz had settled the lawsuit out of court, on the condition that Hotz would never again resume any hacking work on Sony products