

1

Impacts of technology trends on physical attacks ?

P. Maurine

only

LIRMM <u>1996 :</u> Timing attack on <u>120 MHz Pentium</u> Technology node: 350nm Integrated technologies have Integrated technologies have BUT BUT are at a crossroad I P. C. Kocher: Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other Systems. CRYPTO 1996: 20 years

2017 : core i7 7700 – 4.20 GHz Technology node : 14nm ?

Agenda

- Integrated Circuits : evolution and trends

- CMOS technology evolution
- Secure ICs of tomorrow

- Technology trends and adversary challenges

- Current practice of Physical attacks
- Adversary's Challenges

- Conclusion & discussion

CMOS technology evolution (processors and high end products)

Current Secure ICs (smartcards and µC) wrt CMOS scaling

eFlash scaling (required to secure data and keys) is difficult and has a cost !

μC and smartcards follow CMOS technology scaling with a latency of 5 to 7 technology nodes but they follow!

So we may think to have time before facing issues related to advanced technologies !! ... Really ...? Well no !!

CMOS scaling benefits and ... its impact on security !

Secure ICs of today and tomorrow

dynamic scaling of operating parameters

Current Practice of Physical Attacks

From 90nm to 28nm

SCA Challenges : Scaling EM analysis probes

FA Challenges : Scaling EMFI probes Scaling laser spots

Design complexity (die size but not only) and Physical Attacks

~1mm

Unexpected increase of smartcard size !! Potential decrease of smartcard size ?

SCA Challenges : Computational noise Interpretability of noise

FA Challenges : Interpretability of traces ? Granularity of injection means ?

Adaptive designs (varying Vdd, F, CLK frequency) and Physical Attacks

- Cryptographic algorithm execution parallelized on several potential asynchronous processing units working with:
- Time varying clock frequency
- Time varying Vdd and body bias

A single AES on FPGA ☺ (working at quite low frequency ; few couples {Vdd, F} avalaible)

Vdd, F constant

LIRMM

Adaptive designs (varying Vdd, F, CLK frequency) and Physical Attacks

LIRMM

Cryptographic algorithm execution parallelized on several potential asynchronous processing units working with:

- Time varying clock frequency
- Time varying Vdd and body bias

SCA Challenges :

Interpretability of traces (SPA) ? Mixtures of leakages ? Validity of HD and HW models ? Alignment of traces ?

FA Challenges :

Synchronization of fault injection means ? Problem to inject multiple faults ? reproducibility of faults ?

3D Integration and Physical access

Cryptographic blocks embedded in an IC enclosed between others ICs

SCA Challenges :

Conducted leaking signal ? SCA at board level ? Alternative side channel ? Dedicated equipment ?

FA Challenges :

De-assembly ? New injection means ? Conducted perturbations ?

Adversary challenges ?

Adversary solutions ?

3D Integration and Physical access

Jump in the fire :

Get access to a SCA signal or inject faults through software routines or accessible and controllable hardware resources (cache, counters, embedded monitors ...)

Known examples :

- Timing attaks
- RowHammer attacks

those attacks allows to circumvent the problem of identification of the hardware ressources and of getting access to sensitive computations.

LIRMI

Conclusion

Diversification of Integrated Systems processing sensitive data

- smartcards
- smartphones
- smart objects

Several challenges for adversaries related to:

- the scaling of smartcards
- the packaging of smart devices
- the complexity of smart devices

Increasing role of embedded software in attacks... to jump in the fire ! ??

'In a sense' ... back 20 years before ... to timing like attacks !