Dissecting Leakage Resilient PRFs with Multivariate Localized EM Attacks

A Practical Security Evaluation on FPGA <u>Florian Unterstein</u> Johann Heyszl Fabrizio De Santis^a Robert Specht, 13.04.2017

^aTechnical University Munich

Motivation

- Stateless devices often need to derive a pseudorandom secret state from a long-term secret and public inputs
- Interaction between secret and public data needs to be protected against side-channel attacks

Dissecting Leakage Resilient PRFs with Multivariate Localized EM Attacks | Unterstein et al. | 13.04.2017 | 1

Motivation Leakage Resilient Cryptography

- Aims to bound the leakage per execution such that an attacker cannot accumulate information endlessly
- Two important methods:
 - Limited data complexity, i.e. the number of different operations under one key
 - Algorithmic noise from parallel implementations with carefully chosen inputs

Motivation Leakage Resilient Pseudo Random Functions

Dissecting Leakage Resilient PRFs with Multivariate Localized EM Attacks | Unterstein et al. | 13.04.2017 | 3

Motivation Leakage Resilient Pseudo Random Functions

- It was shown that limited data complexity with random inputs is insecure [3]
- Instead, carefully chosen inputs and parallel hardware have been used
- Idea: All S-boxes work in parallel and public inputs to S-boxes are equal
- S-boxes working in parallel adds algorithmic noise
- Carefully chosen inputs prevents divide-and-conquer

Motivation Leakage Resilient Pseudo Random Functions

• Typically: Attack key byte-by-byte and divide by known plaintext:

- Carefully chosen inputs: $p_0 = p_1 = \cdots = p_{14} = p_{15}$
- If all S-boxes leak in parallel at the same time, an attacker cannot differentiate between key bytes
- Even if all key bytes are recovered, the order remains unknown

Motivation Our Research Questions

- Are such constructions secure on FPGAs?
- Specifically:

- Does parallelism with minimal data complexity hold against state-of-the-art localized electromagnetic measurements?
- What security level can we reach against multivariate template attacks?
- How does the S-box placement and routing affect the results?
 - \rightarrow Practical security evaluation on an FPGA device

Setup Measurement Setup and DUT

- Measurement setup
 - 100 μm diameter EM probe
 - 2.5 GHz bandwidth oscilloscope
 - 5GS/s sampling rate
- DUT
 - Xilinx Spartan 6 45 nm FPGA
 - 20 MHz clock
 - Mounted on X-Y-table

Setup FPGA Designs

- We implemented a LR-PRF in two configurations:
 - Data complexity 16 per stage and 32 stages per evaluation
 - Data complexity 2 per stage and 128 stages per evaluation
- For each configuration, we implemented two versions with different placement:
 - Loose placement:

Placement and routing is done without constraints, design is spread across the whole FPGA (about **7 mm**²)

Dense placement:

All S-boxes are instantiated from a hard macro S-box with fixed internal structure and routing, the entire AES is constrained in a small area (about 0.5 mm^2)

Setup AES Hardware Design

Analysis Overview

- 1. Spatial localization of S-boxes
- 2. Profiling phase
- 3. Attack phase

Dissecting Leakage Resilient PRFs with Multivariate Localized EM Attacks | Unterstein et al. | 13.04.2017 | 10

Analysis Step 1: Spatial Localization of S-boxes

- Find positions with maximum leakage for each S-box
- Signal to Noise Ratio (SNR) of attacked values used as metric
- Hot spots for each S-box are clearly visible in all designs

AISEC

Analysis Example: SNR for S-box 0 with different placements

- High relative SNR clearly visible
- Dense placement has lower leakage

Analysis Example: SNR for S-box 1 with different placements

Different S-boxes give different locations with high SNR

Analysis Step 2: Profiling Phase

- Take measurements at each S-box's derived position
- For each S-box:
 - Calculate Linear Discriminant Analysis (LDA) [1] transformation matrix to reduce the dimensionality
 - Build templates for each S-box input value in the LDA transformed subspace

Analysis Step 3: Attack Phase

- Take new measurements at each S-box's derived position
- For each S-box:

- Apply LDA transformation to reduce dimensionality
- Match templates with each trace and calculate subkey probabilities
- Use key rank estimation to calculate guessing entropy of entire key [2] from the resulting subkey lists

Results Estimated Key Ranks After the Attacks

Data Complexity	S-Box Placement	Est. Key Rank
16	Loose	1
16	Dense	1
2	Loose	2 ²⁰
2	Dense	2 ⁴⁸

Security level insufficient for all designs and configurations!

Is this the lower bound or can we do better?

Results Varying Number of Profiling Traces

Profiling is sufficient

Results Varying Number of Attack Traces

- Number of attack traces is sufficient
- Remaining entropy is lower bound for this implementation and DUT

Summary

For implementing LR-PRFs on a **45 nm** FPGA we find that

- 1. Localized EM measurements together with LDA and multivariate template attacks are a big threat
- 2. For efficient PRFs with larger data complexity per stage the attack leads to full key recovery
- 3. For the minimum possible data complexity **2**, the remaining key entropy is still insufficient
- 4. While dense placement hinders the attack, it is still insufficient

Contact Information

Florian Unterstein

Department Hardware Security

Fraunhofer-Institute for Applied and Integrated Security (AISEC)

Address: Parkring 4 85748 Garching (near Munich) Germany Internet: http://www.aisec.fraunhofer.de

 Phone:
 +49 89 3229986-143

 Fax:
 +49 89 3229986-222

 E-Mail:
 forename.surname@aisec.fraunhofer.de

Bibliography

- Fisher, R.A.: The use of multiple measurements in taxonomic problems. Annals of Eugenics 7(7), 179–188 (1936)
- Glowacz, C., Grosso, V., Poussier, R., Schüth, J., Standaert, F.: Simpler and more efficient rank estimation for side-channel security assessment. In: Fast Software Encryption - 22nd International Workshop, FSE 2015, Istanbul, Turkey, March 8-11, 2015, Revised Selected Papers. pp. 117–129 (2015)
- Medwed, M., Standaert, F., Joux, A.: Towards super-exponential side-channel security with efficient leakage-resilient PRFs. In: Prouff, E., Schaumont, P. (eds.) Cryptographic Hardware and Embedded Systems -CHES 2012 - 14th International Workshop, Leuven, Belgium, September 9-12, 2012. Proceedings. Lecture Notes in Computer Science, vol. 7428, pp. 193–212. Springer (2012)

Backup

- Langer ICR HH 100-27 100 μm diameter EM probe
- Langer PA303 30 dB pre-amplifier
- LeCroy WavePro 725Zi oscilloscope with **2.5 GHz** bandwidth and 5 GS/s
- X-Y-table with step size of 140 μm and 70 μm
- Measurement positions are located within an area of about 2.8 mm by 2.8 mm between the bonding wires
- **45 nm** Xilinx Spartan **6** XC6SLX9-3TQG144C FPGA

