

13th April 2017, Paris, France Constructive Side-Channel Analysis and Secure Design (COSADE)

Toward More Efficient DPA-Resistant AES Hardware Architecture Based on Threshold Implementation

Rei Ueno, Naofumi Homma, and Takafumi Aoki Tohoku University

Threshold Implementation (TI)

- Achieve provable security considering glitches
- Masking-based countermeasure

$$a = a_1 + a_2 + \dots + a_i + \dots + a_s$$

 \square *a*: secret value, *a_i*: share

Exploits pipelining to avoid propagating glitches

□ *d*th-order TI defeats *d*th-order DPAs

(Unprotected) AES hardware architectures

TI-based AES architectures

Randomness in TI-based AES architectures

This work

New TI-based S-box

- **Combine algebraic characteristic of AES S-box with** state-of-the-art TI construction (d + 1 input share TI)
- Achieve 25% smaller area than conventional ones
- Efficient byte-serial AES HW architecture for TI
 Resister-retiming for low latency encryption
 Achieve 11-21% lower latency without area overhead

Introduction

- TI-based AES S-box
- AES HW architecture for TI
- Experimental leakage evaluation
- Concluding remarks

Conditions for *d*th-order TI

Correctness

<u>dth-order non-completeness</u>

Uniformity (or mask refreshing)

First-order non-complete circuit

Ring-refreshing

Two constructions of TI-based circuit

- TI with td + 1 input shares (t : algebraic degree)
 - Less registers and randomness
 - Efficiently applied to some practical 4-bit S-boxes
- **TI** with d + 1 input shares
 - Smaller area, but more registers and randomness
 - Input shares must be independent of each other

Linear functions are easily realized

For non-linear function (i.e., S-box)?

Inversion determines security-order and performance

TI-based inversion circuits

Efficiently decomposed into three stages based on tower-field arithmetic

□ Three designs w.r.t. Stage 2 and TI constructions

	Moradi et al., Eurocrypt 2011	Bilgin et al., TCAD 2015	Cnudde et al., CHES 2016
Stage 2	2-stage pipelined	Non-pipelined	2-stage pipelined
Input shares	td + 1	td + 1	d + 1
Area (GE)	4,244	2,224	1,872

Proposed TI-based inversion

TI with *d* + 1 input shares Non-pipelined Stage 2

- Non-pipelined Stage 2 can be efficiently optimized using OR (NOR) gates and factoring
 a xor b xor (a and b) = a or b
 - Difficult to be applied to pipelined Stage 2

First-order TI-based S-boxes

- Logic synthesis with area optimization
 - Tool: Synopsys Design Compiler
 - Technology: TSMC 65 nm standard CMOS Synthesis results

	Moradi+, Eurocrypt 2011	Bilgin+, TCAD 2015	Cnudde+, CHES 2016	This work
Area (GE)	4,244	2,224	1,872	1,342
Latency	5	4	6	5
Area-Latency product	21,220	8,896	11,232	6,710
Randomness [bit]	44	32	56	64

25% more compact and efficient

Introduction

- TI-based AES S-box
- AES HW architecture for TI
- Experimental leakage evaluation
- Concluding remarks

Only one TI-based inversion

- 20 clock cycles per round
 16 clocks for SubBytes
 4 clocks for SubWords in key scheduling
- Latency caused by pipelining should have impact on only first round
 - Exploit parallelism
 - With few additional modules and few path selectors

Proposed AES HW architecture

Separated Inversion, Isomorphism, and Affine
 TI is not applied to key scheduler

State Array

Timing diagram

Clock cycle

0 1 6 7 15 16	17 18 19 20 21 22 23 24
---------------	-------------------------

SubBytes		SR	MixColumns			
	SubWord ir	n Key	Scheduling			

Conventional method

20 (16 + pipeline-latency) clocks for SubBytes
 Distinct clocks for ShiftRows (SR) and MixColumns

Timing diagram

Clock	C	ycle													
0 1			6	7		15	16	17	18	19	20	21	22	23	24
	SubBytes							SR	Ν	1ixCc	lumr	าร			
								S	ubWo	ord ir	ı Key	/Sch	edulii	ng	
	Conventional method														
Inversion							versi	on							
Affine	<u>}</u>		Affine												
MixColu	m	S						SR	N	lixCo	lumr	าร			
								Sub\	Nord				-		
This work															

- 20 clock cycles per round instead of 25
 - Decompose SubBytes into Inversion and Affine
 - Parallel execution of SR, Inversion, Affine, MixColumns

Performance evaluation

	Moradi+, Eurocrypt 2011	Bilgin+, TCAD 2015	Cnudde+, CHES 2016	This work
Area [GE]	11,114	8,119	6,681	6,334
Latency	266	246	276	219
Power [uW]	24.12 (3.14*)	No d	3.06	
Area-Latency product	2,956 K	1,997 K	1,844 K	1,387 K
Power-Latency product	6,416.92 (835.24*)	No data		672.33
Process [nm]	180			65

- * Multiplied by square of process rate
 - 11-21% lower latency and 25% higher efficient

Introduction

- TI-based AES S-box
- AES HW architecture for TI
- Experimental leakage evaluation
- Concluding remarks

Experimental evaluation of DPA-resistance

Implement proposed AES on FPGA to perform Test Vector Leakage Assessment (TVLA)

Proposed AES on FPGA

Experimental setup				
Board	SASEBO-G			
FPGA	Xilinx Virtex PRO II			
Frequency	24MHz			
Oscilloscope	Tektronix DPO7254			
Sampling rate	1GS/s			
# of traces	500,000			

Test Vector Leakage Assessment (TVLA)

Measured trace

Random number for TI-based S-box is generated using LFSR-based PRNG

Result

We can confirm first-order DPA resistance of our architecture under 500,000 traces

Concluding remarks

- Efficient DPA-resistant AES HW architecture based on TI
 - New TI-based S-box
 - 25% smaller area
 - Proposed AES HW architecture for TI
 - 11—21% lower-latency without area overhead
 - Secure under first-order DPAs with 500,000 traces

Future works

- Design and evaluate proposed HW architecture with higher-order TI-based S-boxes
- Reduce randomness