

[COSADE 2017] Efficient Conversion Method from Arithmetic to Boolean Masking in Constrained Devices

Yoo-Seung Won¹ and Dong-Guk Han^{1,2}
¹Department of Financial Information Security, Kookmin University, Seoul, Korea
²Department of Mathematics, Kookmin University, Seoul, Korea

Apr.13.2017

Yoo-Seung Won

- 2 FSE 2015] CGTV method
- 3 Our Contributions
- 4 Analysis and Implementations
- 5 Conclusion

Motivation

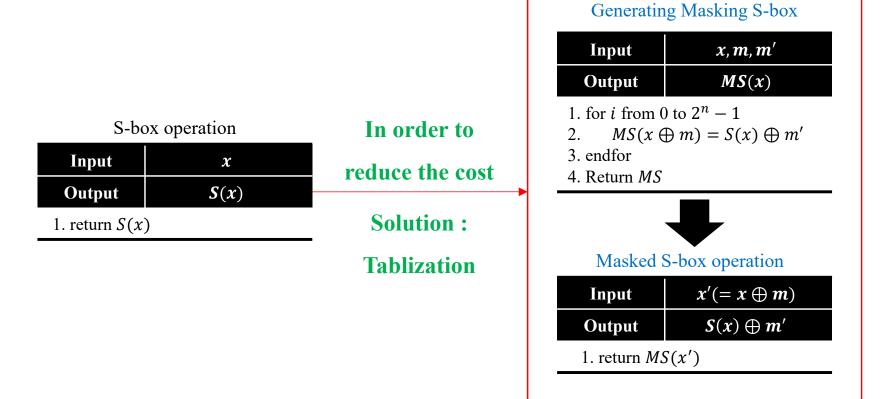
1. Motivation

- Software Countermeasure against side channel analysis
 - **Boolean Masking**
 - Easily compatible
 - Low cost

XX SPN: Substitution-Permutation Network

Motivation

- ***** When Boolean Masking countermeasure is applied to block cipher based on SPN structure
 - > Nonlinear operation consumes heavily cost to construct countermeasure



X X : Addition-Rotation-Xor

Motivation

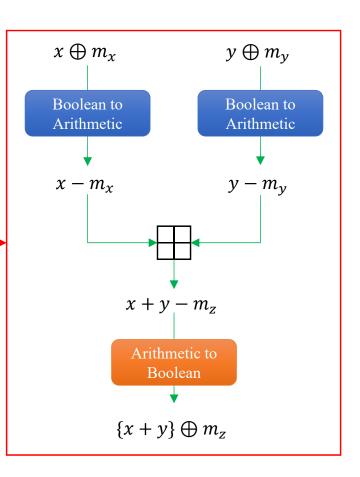
- **❖** When Boolean Masking countermeasure is applied to block cipher based on ARX structure
 - ➤ The bit size of addition : generally 32 or 64 bit
 - ✓ Totally tablization is impossible because of too large

Addition operation

Input	<i>x</i> , <i>y</i>	Solution:
Output	z = x + y	
1. return $x +$	y	BtoA and AtoB

* BtoA: Boolean to Arithmetic Masking

AtoB: Arithmetic to Boolean Masking



1. Motivation

History

Scheme	First-Order Countern	neasure	Complexity
BtoA & AtoB	[CHES 2001]	Goubin Method	0(1) & 0(k)
AtoB	[CHES 2003]	CT Method	Lookup Table (Tablization)
AtoB	[CHES 2004]	NP Method	Lookup Table (Tablization)
AtoB	[CHES 2012]	Debraize Method	Lookup Table (Tablization)
AtoB	[COSADE 2014]	KRJ Method	O(k)
AtoB	[*] [FSE 2015]	CGTV Method	$O(\log k)$

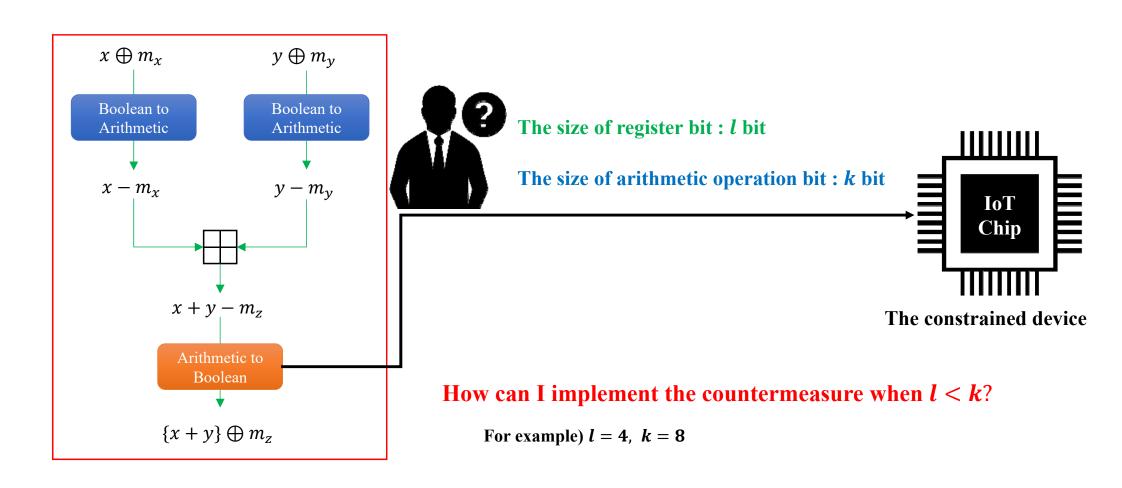
[*] [FSE 2015] Jean-Sébastien Coron, Johann Großschädl, Mehdi Tibouchi, Praveen Kumar Vadnala: Conversion from Arithmetic to Boolean Masking with Logarithmic Complexity

<u> CGTV method is based on the principle of Kogge-Stone Adder</u>**

※ IoT : Internet of Things

Motivation

***** Kogge-Stone Adder is dependent on the size of addition bit



1 Motivation

3 Our Contributions

4 Analysis and Implementations

5 Conclusion

■ [FSE 2015] CGTV method

X Notation

The size of register bit : l bit

The size of arithmetic operation bit : k bit

- **❖** [FSE 2015] CGTV method is based on Kogge-Stone Adder
 - $k = 8, n_k = 3$

Algorithm 1 Kogge-Stone Adder

Input: $x, y \in \{0, 1\}^k$, $n_k = \max(\lceil \log (k - 1) \rceil, 1)$

Output: $z = x + y \mod 2^k$

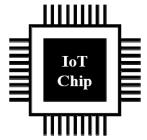
- 1: $P \leftarrow x \oplus y$
- 2: $G \leftarrow x \land y$
- 3: for i := 1 to $n_k 1$ do
- 4: $G \leftarrow (P \land (G \ll 2^{i-1})) \oplus G$
- 5: $P \leftarrow P \land (P \ll 2^{i-1})$
- 6: end for
- 7: $G \leftarrow (P \land (G \ll 2^{n-1})) \oplus G$
- 8: return $x \oplus y \oplus (2G)$

■ [FSE 2015] CGTV method : Limitation

X Notation

The size of register bit : l bit

The size of arithmetic operation bit : k bit



The constrained device

- **❖** [FSE 2015] CGTV method is based on Kogge-Stone Adder
 - k = 8, l = 4

Notation		Array 1			Array 0			
$x_{(1)} x_{(0)} $	$x^{(7)}$	x ⁽⁶⁾	x ⁽⁵⁾	x ⁽⁴⁾	x ⁽³⁾	x ⁽²⁾	x ⁽¹⁾	x ⁽⁰⁾
$y_{(1)} y_{(0)}$	y ⁽⁷⁾	y ⁽⁶⁾	y ⁽⁵⁾	y ⁽⁴⁾	y ⁽³⁾	y ⁽²⁾	y ⁽¹⁾	y ⁽⁰⁾
$z_{(1)} z_{(0)}$	$z^{(7)}$	$Z^{(6)}$	$z^{(5)}$	$Z^{(4)}$	$z^{(3)}$	$Z^{(2)}$	$Z^{(1)}$	$Z^{(0)}$

8-bit Generic Variant Kogge-Stone Adder

Algorithm 1 Kogge-Stone Adder

Input: $x, y \in \{0, 1\}^k$, $n_k = \max(\lceil \log (k - 1) \rceil, 1)$ Output: $z = x + y \mod 2^k$ 1: $P \leftarrow x \oplus y$ 2: $G \leftarrow x \wedge y$ 3: for i := 1 to $n_k - 1$ do
4: $G \leftarrow (P \wedge (G \ll 2^{i-1})) \oplus G$ 5: $P \leftarrow P \wedge (P \ll 2^{i-1})$ 6: end for
7: $G \leftarrow (P \wedge (G \ll 2^{n-1})) \oplus G$ 8: return $x \oplus y \oplus (2G)$

Using array concept

Algorithm 4 Generic Variant for Kogge-Stone Adder

Input: $x = (x_{(m-1)}||\cdots||x_{(0)}), y = (y_{(m-1)}||\cdots||y_{(0)})$ $n = \max(\lceil \log (k-1) \rceil, 1)$ Output: $z = (z_{(m-1)}||\cdots||z_{(0)}) = x + y \mod 2^k$

1: $(p_{(m-1)}||\cdots||p_{(0)}) \leftarrow (x_{(m-1)}||\cdots||x_{(0)}) \oplus (y_{(m-1)}||\cdots||y_{(0)})$ 2: $(g_{(m-1)}||\cdots||g_{(0)}) \leftarrow (x_{(m-1)}||\cdots||x_{(0)}) \wedge (y_{(m-1)}||\cdots||y_{(0)})$

3: for i := 1 to n - 1 do

4: $(h_{(m-1)}||\cdots||h_{(0)}) \leftarrow \mathsf{Shift}[g,2^{i-1}]$

5: $(h_{(m-1)}||\cdots||h_{(0)}) \leftarrow (p_{(m-1)}||\cdots||p_{(0)}) \wedge (h_{(m-1)}||\cdots||h_{(0)})$ 6: $(g_{(m-1)}||\cdots||g_{(0)}) \leftarrow (h_{(m-1)}||\cdots||h_{(0)}) \oplus (g_{(m-1)}||\cdots||g_{(0)})$

7: $(h_{(m-1)}||\cdots||h_{(0)}) \leftarrow \mathsf{Shift}[p,2^{i-1}]$

8: $(p_{(m-1)}||\cdots||p_{(0)}) \leftarrow (p_{(m-1)}||\cdots||p_{(0)}) \wedge (h_{(m-1)}||\cdots||h_{(0)})$

9: end for

10: $(h_{(m-1)}||\cdots||h_{(0)}) \leftarrow \mathsf{Shift}[g,2^{n-1}]$

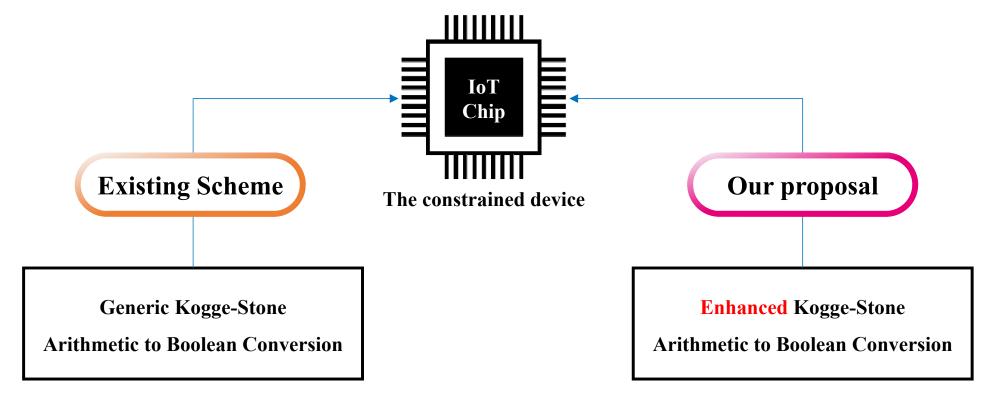
11: $(h_{(m-1)} || \cdots || h_{(0)}) \leftarrow (p_{(m-1)} || \cdots || p_{(0)}) \wedge (h_{(m-1)} || \cdots || h_{(0)})$

12: $(g_{(m-1)}||\cdots||g_{(0)}) \leftarrow (h_{(m-1)}||\cdots||h_{(0)}) \oplus (g_{(m-1)}||\cdots||g_{(0)})$ 13: $(h_{(m-1)}||\cdots||h_{(0)}) \leftarrow \mathsf{Shift}[p, 2^{n-1}]$

14: return $(x_{(m-1)} \oplus y_{(m-1)} \oplus h_{(m-1)} || \cdots || x_{(0)} \oplus y_{(0)} \oplus h_{(0)})$

- 1 Motivation
- 2 [FSE 2015] CGTV method
- **√** (3) Our Contributions
 - 4 Analysis and Implementations
 - 5 Conclusion

Our Contributions



- Using array concept
- High cost consumes because of secure operations
 - **✓** The size of operation unit : the size of arithmetic operation bit

- Low cost consumes when using secure operations
 - ✓ The size of operation unit : the size of register bit
- Easily control the carry bit

Our Contributions – Generic Kogge-Stone AtoB Conversion

- **❖** [FSE 2015] CGTV method
 - **Basic operation : Secure Shift, Secure And, Secure Xor**

Algorithm 5 Kogge-Stone Arithmetic to Boolean Conversion

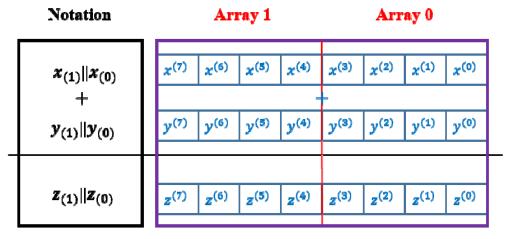
```
Input: A, r \in \{0, 1\}^k \text{ and } n_k = \max(\lceil \log (k - 1) \rceil, 1)
Output: x' such that x' \oplus r = A + r \mod 2^k
 1: Let s \leftarrow \{0,1\}^k, t \leftarrow \{0,1\}^k, u \leftarrow \{0,1\}^k
 2: P' \leftarrow A \oplus s
 3: P' \leftarrow P' \oplus s
 4: G' \leftarrow s \oplus ((A \oplus t) \land r)
 5: G' \leftarrow G' \oplus (t \wedge r)
 6: for i := 1 to n - 1 do
 7: H \leftarrow \mathbf{SecShift}(G', s, t, 2^{i-1})
 8: U \leftarrow \mathbf{SecAnd}(P', H, s, t, u)
 9: G' \leftarrow \mathbf{SecXor}(G', U, u)
10: H \leftarrow \mathbf{SecShift}(P', s, t, 2^{i-1})
11: P' \leftarrow \mathbf{SecAnd}(P', H, s, t, u)
12: P' \leftarrow P' \oplus s
13: P' \leftarrow P' \oplus u
14: end for
15: H \leftarrow \mathbf{SecShift}(G', s, t, 2^{n-1})
16: U \leftarrow \mathbf{SecAnd}(P', H, s, t, u)
17: G' \leftarrow \mathbf{SecXor}(G', U, u)
18: x' \leftarrow A \oplus 2G'
19: x' \leftarrow x' \oplus 2s
20: return x'
```


Our Contributions – Underlying Concept

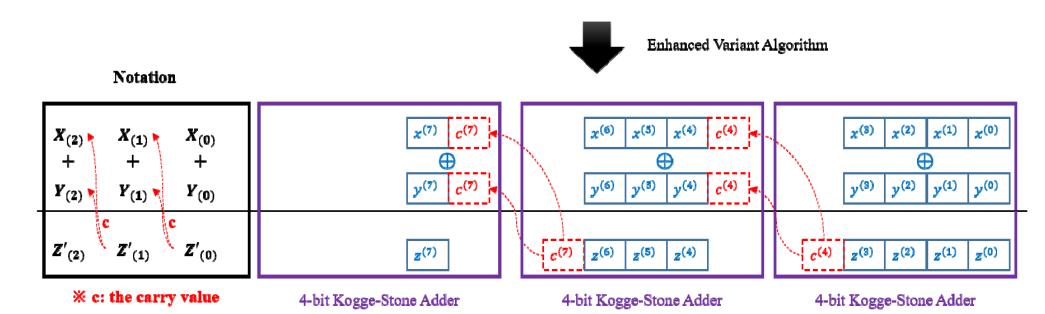
$$k = 8$$

The size of register bit

$$l = 4$$



8-bit Generic Variant Kogge-Stone Adder

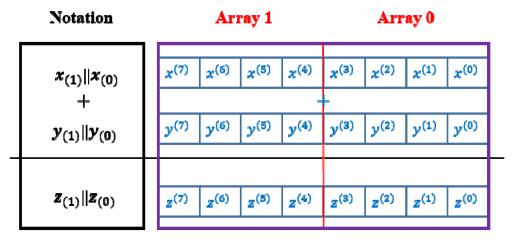


\blacksquare Our Contributions – Underlying Concept [m=2]

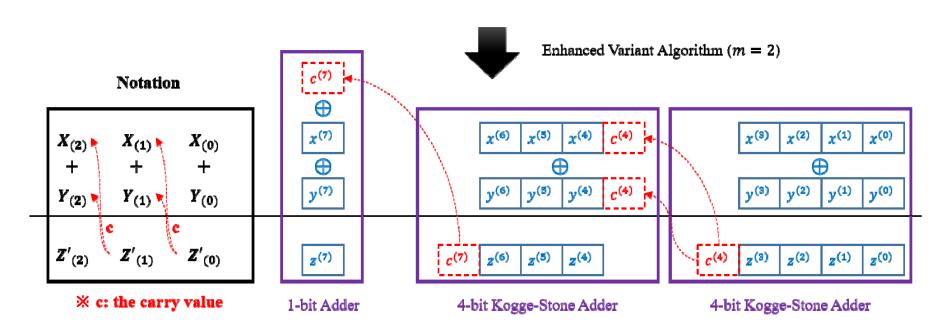
$$k = 8$$

The size of register bit

$$l = 4$$

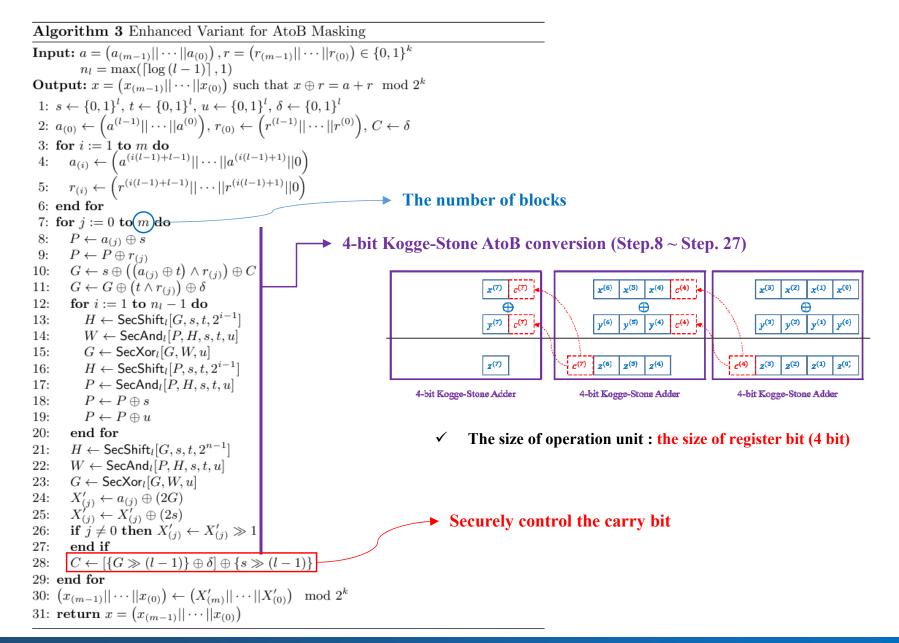


8-bit Generic Variant Kogge-Stone Adder

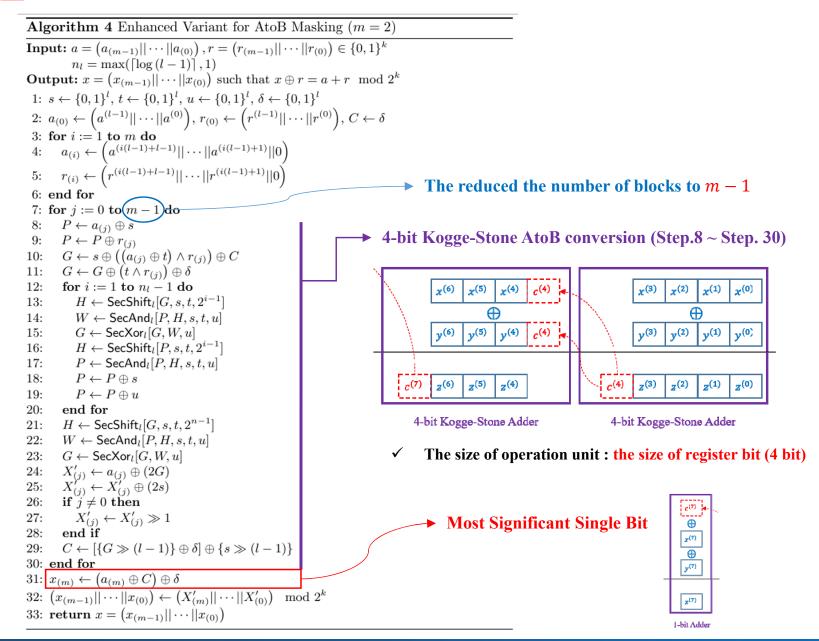


Our Contributions – Pseudo Code for Enhanced AtoB Conversion

3. Our Contributions



Our Contributions – Pseudo Code for Enhanced AtoB Conversion



- 1 Motivation
- 2 FSE 2015 CGTV method
- 3 Our Contributions
- 4 Analysis and Implementations
 - 5 Conclusion

■ Analysis and Implementations : Comparison (1)

% Notation

k: the size of arithmetic operation bit

l: the size of the register bit

m: the number of blocks

 n_{α} : max($\lceil \log(\alpha - 1) \rceil$, 1) ($\alpha = k$ or l)

Algarithm	Dand	Computational Complexity						
Algorithm	Algorithm Rand Xor		And	Shift				
[FSE 2015]	3k	$20mn_k - m - 4n_k$	$8mn_k-2m$	$8mn_k - 4n_k$				
Enhanced Kogge-Stone AtoB Conversion	4l	$16mn_l + 5m + 16n_l - 1$	$8mn_l - m + 8n_l - 4$	$4mn_l + 7m + 4n_l - 5$				
Enhanced Kogge-Stone AtoB Conversion $(m = 2)$	41	$16mn_l + 3m + 20$	$8mn_l - 2m + 7$	$4mn_l + 3m + 9$				

■ Analysis and Implementations : Comparison (1)

% Notation

k: the size of arithmetic operation bit

l: the size of the register bit

m: the number of blocks

 n_{α} : max($\lceil \log(\alpha - 1) \rceil$, 1) ($\alpha = k$ or l)

Algoviálova	David		Computational Complexity	
Algorithm	Rand	Xor	And	Shift
[FSE 2015]	3k	$20mn_k-m-4n_k$	$8mn_k-2m$	$8mn_k$ – $4n_k$
Enhanced Kogge-Stone AtoB Conversion	4l	$16n_{l} + 5m + 16n_{l} - 1$	$8mn_l - m + 8n_l - 4$	$4mn_l + 7m + 4n_l - 5$
Enhanced Kogge-Stone AtoB Conversion $(m = 2)$	4l	$16mn_l + 3m + 20$	$8mn_l - 2m + 7$	$4mn_l + 3m + 9$

■ Analysis and Implementations: in the simulated AVR, MSP, ARM boards

Algorithm	l	k	Clock Cycle	Penalty Factor
[FSE 2015]	8	64	2,864	1.00
Enhanced Kogge-Stone AtoB Conversion	8	64	1,217	0.42

X Simulation Program : AVR Studio 6.2

[FSE 2015]	16	64	2,705	1.00
Enhanced Kogge-Stone AtoB Conversion	16	64	765	0.28

X Simulation Program : IAR Embedded Workbench Evaluation

[FSE 2015]	32	64	1,196	1.00
Enhanced Kogge-Stone AtoB Conversion ($m = 2$)	32	64	384	0.32

X Simulation Program : ARM Developer Suite v1.2

■ Analysis and Implementations : Application to First-Order Masked SPECK

Algorithm	l	k	Clock Cycle	Penalty Factor
Non-masked SPECK	8	64	24,360	1.00
Masked SPECK with [FSE 2015]	8	64	177,303	7.27
Masked SPECK with Enhanced Kogge-Stone AtoB Conversion	8	64	112,951	4.64
Non-masked SPECK	16	64	21,446	1.00
Masked SPECK with [FSE 2015]	16	64	143,642	6.70
Masked SPECK with Enhanced Kogge-Stone AtoB Conversion	16	64	81,562	3.80
Non-masked SPECK	32	64	10,279	1.00
Masked SPECK with [FSE 2015]	32	64	71,006	6.91
Masked SPECK with Enhanced Kogge-Stone AtoB Conversion ($m = 2$)	32	64	44,936	4.37

- 1 Motivation
- 2 FSE 2015] CGTV method
- 3 Our Contributions
- 4 Analysis and Implementations
- 5 Conclusion

Conclusion

- Our solution applies to directly low-resource device
 - **Suitable to IoT device**

- Implementation performance increases approximately 58~72% over the original algorithm results
 - When applied to SPECK, 36~43% improvements
- Extension to higher-order AtoB masking scheme and arithmetic operation without conversion

Q&A: mathwys87@kookmin.ac.kr