

On the Easiness of Turning Higher-Order Leakages into First-Order

Thorben Moos and Amir Moradi Horst-Görtz Institute for IT Security Ruhr-Universität Bochum 14th April, 2017

Outline

1 Introduction

- Masked and Unmasked Leakage
- Novel Approach

2 Simulation

- Distinguishability
- Correlation Comparison
- 3 Experimental Verification
 - Target
 - Results

4 Conclusion

Leakage Assumption: Noisy Hamming Weight Model

Masked and Unmasked Leakage

Unmasked Implementation

$$l(x) = HW(x) + \mathcal{N}(\mu, \delta^2)$$

$$x \in \{0, 1\}^4, \ \mu = 0, \ \delta = 2$$

First-Order Boolean Masked Implementation

$$\begin{split} l(x_m) + l(m) &= HW(x_m) + HW(m) + \mathcal{N}(\mu, \delta^2) \\ & x \in \{0, 1\}^4, \ m \leftarrow \{0, 1\}^4, \ x_m = x \oplus m, \ \mu = 0, \ \delta = 2 \end{split}$$

Unmasked Implementation

Introduction

$$\begin{split} x &= 0000_2 \\ l(x) &= HW(0000_2) + \mathcal{N}(0, 2^2) \end{split}$$

Unmasked Implementation

Masked and Unmasked Leakage

 $\begin{aligned} \mathbf{x} &= 0000_2 \\ \mathbf{l}(\mathbf{x}) &= \mathrm{HW}(0000_2) + \mathcal{N}(0, 2^2) \\ \mathbf{l}(\mathbf{x}) &= 0 + \mathcal{N}(0, 2^2) \end{aligned}$

Unmasked Implementation

Masked and Unmasked Leakage

RUB

$$\begin{split} \mathbf{x} &= 0000_2 \\ \mathbf{l}(\mathbf{x}) &= \mathbf{HW}(0000_2) + \mathcal{N}(0, 2^2) \\ \mathbf{l}(\mathbf{x}) &= 0 + \mathcal{N}(0, 2^2) \\ &\mathbf{E}(\mathbf{l}(\mathbf{x})) = 0 \end{split}$$

 $\begin{aligned} \mathbf{x} &= 1111_2 \\ \mathbf{l}(\mathbf{x}) &= \mathbf{HW}(1111_2) + \mathcal{N}(0, 2^2) \\ \mathbf{l}(\mathbf{x}) &= 4 + \mathcal{N}(0, 2^2) \\ \mathbf{E}(\mathbf{l}(\mathbf{x})) &= 4 \end{aligned}$

First-Order Boolean Masked Implementation

RUB

Masked and Unmasked Leakage

$$\begin{split} x &= 0000_2 & x = 1111_2 \\ l(x_m) + l(m) &= HW(0000_2 \oplus m) + \dots & l(x_m) + l(m) = HW(1111_2 \oplus m) + \dots \end{split}$$

First-Order Boolean Masked Implementation

Masked and Unmasked Leakage

$$\begin{split} x &= 0000_2 & x = 1111_2 \\ l(x_m) + l(m) &= HW(0000_2 \oplus m) + \dots \\ l(x_m) + l(m) &= 2 \cdot HW(m) + \mathcal{N}(0, 2^2) & l(x_m) + l(m) = 4 + \mathcal{N}(0, 2^2) \end{split}$$

First-Order Boolean Masked Implementation

Masked and Unmasked Leakage

Higher-Order Statistical Moments

Masked and Unmasked Leakage

Usually assumed adversarial strategy:

Estimating second-order centered moments (= variances) to distinguish distributions

Higher-Order Statistical Moments

Masked and Unmasked Leakage

Usually assumed adversarial strategy:

Estimating second-order centered moments (= variances) to distinguish distributions

BUT: There are some limitations

- · Complexity increases exponentially with the order to be estimated
- Estimation is very sensitive to the noise level

Any Simple Alternatives? Novel Approach

Our observation:

First-order moments (= means) can be used to distinguish slices of the distributions

Any Simple Alternatives? Novel Approach

Our observation:

First-order moments (= means) can be used to distinguish slices of the distributions

Can this be useful or advantageous in practice?

- 1 How to choose the slices/thresholds?
- 2 Does the concept apply to higher-order masking as well?
- 3 Is it able to outperform higher-order distinguishers (for specific settings)?
- Is it suitable for real-world measurements (i.e. not perfectly gaussian noise)?

t Statistics: First-Order Masking – Unsuitable Slices

Distinguishability

15

10

5

probability \times 10⁻³

- 1 million simulations •
- two different $x \in \{0, 1\}^8$
- random/uniform $m \leftarrow \{0, 1\}^8$
- $\mu = 0, \ \delta = 2$

t Statistics: First-Order Masking – Suitable Slices

Distinguishability

t Statistics: Second-Order Masking – Unsuitable Slices Distinguishability

Note: Second-order masked leakage distributions are usually distinguished by their third-order statistical moment (= skewness)

- 1 million simulations
- two different $x \in \{0, 1\}^8$
- random/uniform $m \leftarrow \{0, 1\}^8$
- $\mu = 0$, $\delta = 2$

t Statistics: Second-Order Masking – Suitable Slices

Distinguishability

t Statistics: Second-Order Masking – Suitable Slices

Distinguishability

Different Slices – First-Order Masking

Correlation Comparison

Different Slices – Second-Order Masking Correlation Comparison

PRESENT-80 Threshold Implementation Chip

Target

150 nm ASIC Prototype with nibble-serial PRESENT-80 Threshold Implementation Core

(a) Layered view of 150nm ASIC

(b) Threshold implementation of the 4-bit PRESENT-80 S-Box

Conventional Second- and Third-Order CPA Results

First-Order CPA on Upper 20% and Upper 30% Slices Results

Quantitative Comparison

Results

Up to 4 Times Less Traces Required

Stat. Order	Slice	MTD
1 st	100 %	—
2 nd	100 %	200,000
3 rd	100 %	>5,000,000
1 st	Upper 15 %	700,000
1 st	Upper 20 %	50,000
1 st	Upper 25 %	70,000
1 st	Upper 30 %	70,000
1 st	Upper 35 %	90,000
1 st	Upper 40 %	800,000

Thorben Moos | On the Easiness of Turning Higher-Order Leakages into First-Order | 14th April, 2017

RUHR-UNIVERSITÄT BOCHUM Visual Comparison Results

Conclusion and Future Work

Conclusion

Conclusion

- Masked leakage distributions can be attacked by first-order distinguishers
- No estimation of higher-order moments required
- Might be able to relax sensitivity of higher-order evaluations to the noise level
- Case study shows that it can succeed with fewer measurements

Future Work

- More quantitative case study Implementations with Masking + Hiding
- Combine attacks on different slices (Useful for leakage detection?)

Thank you for your attention.

Any questions?