MINES Saint-Étienne

DFA ON LS-DESIGNS WITH A PRACTICAL IMPLEMENTATION ON SCREAM

Works presentation at COSADE 2017

Benjamin Lac ${ }^{1,5}$, Anne Canteaut ${ }^{2}$, Jacques J.A. Fournier ${ }^{3}$, Renaud Sirdey ${ }^{4}$
1 CEA-Tech, Gardanne, France,
2 Inria, Paris, France,
3 CEA-Leti, Grenoble, France,
4 CEA-List, Saclay, France
5 ENSM-SE, Saint-Étienne, France,
\{benjamin.lac, jacques.fournier, renaud.sirdey\}@cea.fr, anne.canteaut@inria.fr

April 14th, 2017
(1) LS-Designs

2 Applying DFA on LS-Designs

- General principle
- Depending on the fault model

3 Practical implementation of the DFA on SCREAM

- The TAE mode SCREAM
- DFA on SCREAM
- Practical implementation

4 Countermeasures

- Modes of operation
- Masking
- Internal Redundancy Countermeasure
(5) Conclusion and perspectives

LS-Designs

(1) LS-Designs
2) Applying DFA on LS-Designs

- General principle
- Depending on the fault model
(3) Practical implementation of the DFA on SCREAM
- The TAE mode SCREAM
- DFA on SCREAM
- Practical implementation

4. Countermeasures

- Modes of operation
- Masking
- Internal Redundancy Countermeasure
(5) Conclusion and perspectives

LS-Designs

General structure

An LS-Design is an iterative block cipher composed of r rounds, introduced by Grosso in 2014. It takes as input an n-bit block, uses an n-bit key and n-bit round constants.

The round function

The inner state is represented as an $n=\omega \times$ c-bit array

LS-Designs
1 of 15

General structure

An LS-Design is an iterative block cipher composed of r rounds, introduced by Grosso in 2014. It takes as input an n-bit block, uses an n-bit key and n-bit round constants.

The round function
The inner state is represented as an $n=\omega \times$ obit array

LS-Designs
1 of 15

General structure

An LS-Design is an iterative block cipher composed of r rounds, introduced by Grosso in 2014. It takes as input an n-bit block, uses an n-bit key and n-bit round constants.

The round function
The inner state is represented as an $n=\omega \times$ o-bit array

LS-Designs
1 of 15

General structure

An LS-Design is an iterative block cipher composed of r rounds, introduced by Grosso in 2014. It takes as input an n-bit block, uses an n-bit key and n-bit round constants.

The round function

The inner state is represented as an $n=\omega \times$ obit array.

LS-Designs
1 of 15

General structure

An LS-Design is an iterative block cipher composed of r rounds, introduced by Grosso in 2014. It takes as input an n-bit block, uses an n-bit key and n-bit round constants.

E The round function

The inner state is represented as an $n=\omega \times c$-bit array.

s_{1}	s_{2}	\cdots	s_{n-1}	S_{n}

LS-Designs
1 of 15

General structure

An LS-Design is an iterative block cipher composed of r rounds, introduced by Grosso in 2014. It takes as input an n-bit block, uses an n-bit key and n-bit round constants.

EThe round function

The inner state is represented as an $n=\omega \times c$-bit array.

LS-Designs
1 of 15

General structure

An LS-Design is an iterative block cipher composed of r rounds, introduced by Grosso in 2014. It takes as input an n-bit block, uses an n-bit key and n-bit round constants.

E The round function

The inner state is represented as an $n=\omega \times c$-bit array.

LS-Designs
1 of 15

General structure

An LS-Design is an iterative block cipher composed of r rounds, introduced by Grosso in 2014. It takes as input an n-bit block, uses an n-bit key and n-bit round constants.

EThe round function

The inner state is represented as an $n=\omega \times c$-bit array.

$S_{1,1}$	$S_{1,2}$	\cdots	$S_{1, c}$
$S_{2,1}$	$S_{2,2}$	\cdots	$S_{2, c}$

LS-Designs
1 of 15

General structure

An LS-Design is an iterative block cipher composed of r rounds, introduced by Grosso in 2014. It takes as input an n-bit block, uses an n-bit key and n-bit round constants.

E The round function

The inner state is represented as an $n=\omega \times c$-bit array.

$S_{1,1}$	$S_{1,2}$	\cdots	$S_{1, c}$
$S_{2,1}$	$S_{2,2}$	\cdots	$S_{2, c}$

LS-Designs
1 of 15

General structure

An LS-Design is an iterative block cipher composed of r rounds, introduced by Grosso in 2014. It takes as input an n-bit block, uses an n-bit key and n-bit round constants.

E The round function

The inner state is represented as an $n=\omega \times c$-bit array.

$S_{1,1}$	$S_{1,2}$	\cdots	$S_{1, c}$
$S_{2,1}$	$S_{2,2}$	\cdots	$S_{2, c}$
\vdots	\vdots	\ddots	\vdots

LS-Designs
1 of 15

General structure

An LS-Design is an iterative block cipher composed of r rounds, introduced by Grosso in 2014. It takes as input an n-bit block, uses an n-bit key and n-bit round constants.

E The round function

The inner state is represented as an $n=\omega \times c$-bit array.

LS-Designs
1 of 15

General structure

An LS-Design is an iterative block cipher composed of r rounds, introduced by Grosso in 2014. It takes as input an n-bit block, uses an n-bit key and n-bit round constants.

E The round function

The inner state is represented as an $n=\omega \times c$-bit array.

$S_{1,1}$	$S_{1,2}$	\cdots	$S_{1, c}$
$S_{2,1}$	$S_{2,2}$	\cdots	$S_{2, c}$
\vdots	\vdots	\ddots	\vdots
$S_{\omega, 1}$	$S_{\omega, 2}$	\cdots	$S_{\omega, c}$

LS-Designs
1 of 15

General structure

An LS-Design is an iterative block cipher composed of r rounds, introduced by Grosso in 2014. It takes as input an n-bit block, uses an n-bit key and n-bit round constants.

E The round function

The inner state is represented as an $n=\omega \times c$-bit array.

$I_{1,1}^{(1)}$	$I_{1,2}^{(1)}$	\cdots	$I_{1, c}^{(1)}$
$I_{2,1}^{(1)}$	$I_{2,2}^{(1)}$	\cdots	$I_{2, c}^{(1)}$
\vdots	\vdots	\ddots	\vdots
$I_{\omega, 1}^{(1)}$	$I_{\omega, 2}^{(1)}$	\cdots	$I_{\omega, c}^{(1),}$

LS-Designs
1 of 15

General structure

An LS-Design is an iterative block cipher composed of r rounds, introduced by Grosso in 2014. It takes as input an n-bit block, uses an n-bit key and n-bit round constants.

The round function

The inner state is represented as an $n=\omega \times c$-bit array.

$I_{1,1}^{(1)}$	$I_{1,2}^{(1)}$	\cdots	$I_{1, c}^{(1)}$
$I_{2,1}^{(1)}$	$I_{2,2}^{(1)}$	\cdots	$I_{2, c}^{(1)}$
\vdots	\vdots	\ddots	\vdots
$I_{\omega, 1}^{(1)}$	$I_{\omega, 2}^{(1)}$	\cdots	$I_{\omega, c}^{(1),}$

\oplus

LS-Designs
1 of 15

General structure

An LS-Design is an iterative block cipher composed of r rounds, introduced by Grosso in 2014. It takes as input an n-bit block, uses an n-bit key and n-bit round constants.

The round function

The inner state is represented as an $n=\omega \times c$-bit array.

$I_{1,1}^{(1)}$	$I_{1,2}^{(1)}$	\cdots	$I_{1, c}^{(1)}$
$I_{2,1}^{(1)}$	$I_{2,2}^{(1)}$	\cdots	$I_{2, c}^{(1)}$
\vdots	\vdots	\ddots	\vdots
$I_{\omega, 1}^{(1)}$	$I_{\omega, 2}^{(1)}$	\cdots	$I_{\Lambda, c, c}^{(1),}$

\oplus

LS-Designs
1 of 15

General structure

An LS-Design is an iterative block cipher composed of r rounds, introduced by Grosso in 2014. It takes as input an n-bit block, uses an n-bit key and n-bit round constants.

E The round function

The inner state is represented as an $n=\omega \times c$-bit array.

$X_{1,1}^{(1)}$	$X_{1,2}^{(1)}$	\cdots	$X_{1, c}^{(1)}$
$X_{2,1}^{(1)}$	$X_{2,2}^{(1)}$	\cdots	$X_{2, c}^{(1)}$
\vdots	\vdots	\ddots	\vdots
$X_{\omega, 1}^{(1)}$	$X_{\omega, 2}^{(1)}$	\cdots	$X_{\omega, c}^{(1)}$

LS-Designs
1 of 15

General structure

An LS-Design is an iterative block cipher composed of r rounds, introduced by Grosso in 2014. It takes as input an n-bit block, uses an n-bit key and n-bit round constants.

E The round function

The inner state is represented as an $n=\omega \times c$-bit array.

LS-Designs
1 of 15

General structure

An LS-Design is an iterative block cipher composed of r rounds, introduced by Grosso in 2014. It takes as input an n-bit block, uses an n-bit key and n-bit round constants.

E The round function

The inner state is represented as an $n=\omega \times c$-bit array.

LS-Designs
1 of 15

General structure

An LS-Design is an iterative block cipher composed of r rounds, introduced by Grosso in 2014. It takes as input an n-bit block, uses an n-bit key and n-bit round constants.

E The round function

The inner state is represented as an $n=\omega \times c$-bit array.

LS-Designs
1 of 15

General structure

An LS-Design is an iterative block cipher composed of r rounds, introduced by Grosso in 2014. It takes as input an n-bit block, uses an n-bit key and n-bit round constants.

E The round function

The inner state is represented as an $n=\omega \times c$-bit array.

LS-Designs
1 of 15

General structure

An LS-Design is an iterative block cipher composed of r rounds, introduced by Grosso in 2014. It takes as input an n-bit block, uses an n-bit key and n-bit round constants.

E The round function

The inner state is represented as an $n=\omega \times c$-bit array.

LS-Designs
1 of 15

General structure

An LS-Design is an iterative block cipher composed of r rounds, introduced by Grosso in 2014. It takes as input an n-bit block, uses an n-bit key and n-bit round constants.

E The round function

The inner state is represented as an $n=\omega \times c$-bit array.

LS-Designs
1 of 15

General structure

An LS-Design is an iterative block cipher composed of r rounds, introduced by Grosso in 2014. It takes as input an n-bit block, uses an n-bit key and n-bit round constants.

E The round function

The inner state is represented as an $n=\omega \times c$-bit array.

$Y_{1,1}^{(1)}$	$Y_{1,2}^{(1)}$	\cdots	$Y_{1, c}^{(1)}$
$Y_{2,1}^{(1)}$	$Y_{2,2}^{(1)}$	\cdots	$Y_{2, c}^{(1)}$
\vdots	\vdots	\ddots	\vdots
$Y_{\omega, 1}^{(1)}$	$Y_{\omega, 2}^{(1)}$	\cdots	$Y_{\omega, c}^{(1)}$

LS-Designs
1 of 15

General structure

An LS-Design is an iterative block cipher composed of r rounds, introduced by Grosso in 2014. It takes as input an n-bit block, uses an n-bit key and n-bit round constants.

E The round function

The inner state is represented as an $n=\omega \times c$-bit array.

LS-Designs
1 of 15

General structure

An LS-Design is an iterative block cipher composed of r rounds, introduced by Grosso in 2014. It takes as input an n-bit block, uses an n-bit key and n-bit round constants.

E The round function

The inner state is represented as an $n=\omega \times c$-bit array.

LS-Designs
1 of 15

General structure

An LS-Design is an iterative block cipher composed of r rounds, introduced by Grosso in 2014. It takes as input an n-bit block, uses an n-bit key and n-bit round constants.

E The round function

The inner state is represented as an $n=\omega \times c$-bit array.

LS-Designs
1 of 15

General structure

An LS-Design is an iterative block cipher composed of r rounds, introduced by Grosso in 2014. It takes as input an n-bit block, uses an n-bit key and n-bit round constants.

E The round function

The inner state is represented as an $n=\omega \times c$-bit array.

LS-Designs
1 of 15

General structure

An LS-Design is an iterative block cipher composed of r rounds, introduced by Grosso in 2014. It takes as input an n-bit block, uses an n-bit key and n-bit round constants.

E The round function

The inner state is represented as an $n=\omega \times c$-bit array.

LS-Designs
1 of 15

General structure

An LS-Design is an iterative block cipher composed of r rounds, introduced by Grosso in 2014. It takes as input an n-bit block, uses an n-bit key and n-bit round constants.

E The round function

The inner state is represented as an $n=\omega \times c$-bit array.

LS-Designs
1 of 15

General structure

An LS-Design is an iterative block cipher composed of r rounds, introduced by Grosso in 2014. It takes as input an n-bit block, uses an n-bit key and n-bit round constants.

E The round function

The inner state is represented as an $n=\omega \times c$-bit array.

$Z_{1,1}^{(1)}$	$Z_{1,2}^{(1)}$	\cdots	$Z_{1, c}^{(1)}$
$Z_{2,1}^{(1)}$	$Z_{2,2}^{(1)}$	\cdots	$Z_{2, c}^{(1)}$
\vdots	\vdots	\ddots	\vdots
$Z_{\omega, 1}^{(1)}$	$Z_{\omega, 2}^{(1)}$	\cdots	$Z_{\omega, c}^{(1)}$

LS-Designs
1 of 15

General structure

An LS-Design is an iterative block cipher composed of r rounds, introduced by Grosso in 2014. It takes as input an n-bit block, uses an n-bit key and n-bit round constants.

E The round function

The inner state is represented as an $n=\omega \times c$-bit array.

$C_{1,1}^{(1)}$	$C_{1,2}^{(1)}$	\cdots	$C_{1, c}^{(1)}$
$C_{2,1}^{(1)}$	$C_{2,2}^{(1)}$	\cdots	$C_{2, c}^{(1)}$
\vdots	\vdots	\ddots	\vdots
$C_{\omega, 1}^{(1)}$	$C_{\omega, 2}^{(1)}$	\cdots	$C_{w, c}^{(1)}$

\oplus| $z_{1,1}^{(1)}$ | $z_{1,2}^{(1)}$ | \cdots | $z_{1, c}^{(1)}$ |
| :---: | :---: | :---: | :---: |
| $z_{2,1}^{(1)}$ | $z_{2,2}^{(1)}$ | \cdots | $z_{2, c}^{(1)}$ |
| \vdots | \vdots | \ddots | \vdots |
| $z_{\omega, 1}^{(1)}$ | $z_{\omega, 2}^{(1)}$ | \cdots | $z_{\omega, c}^{(1)}$ |

LS-Designs
1 of 15

General structure

An LS-Design is an iterative block cipher composed of r rounds, introduced by Grosso in 2014. It takes as input an n-bit block, uses an n-bit key and n-bit round constants.

The round function

The inner state is represented as an $n=\omega \times c$-bit array.

$O_{1,1}^{(1)}$	$O_{1,2}^{(1)}$	\cdots	$O_{1, c}^{(1)}$					
$O_{2,1}^{(1)}$	$O_{2,2}^{(1)}$	\cdots	$O_{2, c}^{(1)}$					
\vdots	\vdots	\ddots	\vdots					
$O_{\omega, 1}^{(1)}$	$O_{\omega, 2}^{(1)}$	\cdots	$O_{\omega, c}^{(1)}$	\leftarrow	$C_{1,1}^{(1)}$	$C_{1,2}^{(1)}$	\cdots	$C_{1, c}^{(1)}$
:---:	:---:	:---:	:---:					
$C_{2,1}^{(1)}$	$C_{2,2}^{(1)}$	\cdots	$C_{2, c}^{(1)}$					
\vdots	\vdots	\ddots	\vdots					
$C_{\omega, 1}^{(1)}$	$C_{\omega, 2}^{(1)}$	\cdots	$C_{\omega, c}^{(1)}$					

\oplus| $z_{1,1}^{(1)}$ | $z_{1,2}^{(1)}$ | \cdots | $z_{1, c}^{(1)}$ |
| :---: | :---: | :---: | :---: |
| $z_{2,1}^{(1)}$ | $z_{2,2}^{(1)}$ | \cdots | $z_{2, c}^{(1)}$ |
| \vdots | \vdots | \ddots | \vdots |
| $z_{\omega, 1}^{(1)}$ | $z_{\omega, 2}^{(1)}$ | \cdots | $z_{\omega, c}^{(1)}$ |

LS-Designs
1 of 15

General structure

An LS-Design is an iterative block cipher composed of r rounds, introduced by Grosso in 2014. It takes as input an n-bit block, uses an n-bit key and n-bit round constants.

The round function

The inner state is represented as an $n=\omega \times c$-bit array.

$O_{1,1}^{(1)}$	$O_{1,2}^{(1)}$	\cdots	$O_{1, c}^{(1)}$					
$O_{2,1}^{(1)}$	$O_{2,2}^{(1)}$	\cdots	$O_{2, c}^{(1)}$					
\vdots	\vdots	\ddots	\vdots					
$O_{\omega, 1}^{(1)}$	$O_{\omega, 2}^{(1)}$	\cdots	$O_{\omega, c}^{(1)}$	\leftarrow	$C_{1,1}^{(1)}$	$C_{1,2}^{(1)}$	\cdots	$C_{1, c}^{(1)}$
:---:	:---:	:---:	:---:					
$C_{2,1}^{(1)}$	$C_{2,2}^{(1)}$	\cdots	$C_{2, c}^{(1)}$					
\vdots	\vdots	\ddots	\vdots					
$C_{\omega, 1}^{(1)}$	$C_{\omega, 2}^{(1)}$	\cdots	$C_{\omega, c}^{(1)}$					

\oplus| $z_{1,1}^{(1)}$ | $z_{1,2}^{(1)}$ | \cdots | $z_{1, c}^{(1)}$ |
| :---: | :---: | :---: | :---: |
| $z_{2,1}^{(1)}$ | $z_{2,2}^{(1)}$ | \cdots | $z_{2, c}^{(1)}$ |
| \vdots | \vdots | \ddots | \vdots |
| $z_{\omega, 1}^{(1)}$ | $z_{\omega, 2}^{(1)}$ | \cdots | $z_{\omega, c}^{(1)}$ |

Applying DFA on LS-Designs

(1) LS-Designs
(2) Applying DFA on LS-Designs

- General principle
- Depending on the fault model
(3) Practical implementation of the DFA on SCREAM
- The TAE mode SCREAM
- DFA on SCREAM
- Practical implementation

4. Countermeasures

- Modes of operation
- Masking
- Internal Redundancy Countermeasure
(5) Conclusion and perspectives

Applying DFA on LS-Designs
General principle
2 of 15

- General principle

Applying DFA on LS-Designs
General principle
2 of 15
■ General principle

${ }_{12}^{(t)}$	$x_{12}^{(t)}$	$x_{2.2}^{(t)}$
$\overline{\overline{x_{2, ~}^{\text {M }}}}$	$\overline{x_{22}}$	$\overline{\overline{2 x}{ }^{\text {a }}}$
$x_{5,3}^{(0)}$	$x_{\square 2}^{(H)}$	$x+5$

Applying DFA on LS-Designs
General principle
2 of 15
E General principle

Applying DFA on LS-Designs
General principle
2 of 15
General principle

Applying DFA on LS-Designs
General principle
2 of 15
General principle

$\oplus \quad K \oplus C^{(r)} \rightarrow$| $\mathrm{CT}_{1,1}$ | $\mathrm{CT}_{1,2}$ | \cdots | $\mathrm{CT}_{1, c}$ |
| :---: | :---: | :---: | :---: |
| $\mathrm{CT}_{2,1}$ | $\mathrm{CT}_{2,2}$ | \cdots | $\mathrm{CT}_{2, c}$ |
| \vdots | \vdots | \ddots | \vdots |
| $C T_{\omega, 1}$ | $\mathrm{CT}_{\omega, 2}$ | \cdots | $\mathrm{CT}_{\omega, c}$ |

Applying DFA on LS-Designs

General principle

2 of 15
General principle

$\oplus \quad K \oplus C^{(r)} \rightarrow$| $\mathrm{CT}_{1,1}$ | $\mathrm{CT}_{1,2}$ | \cdots | $\mathrm{CT}_{1, c}$ |
| :---: | :---: | :---: | :---: |
| $\mathrm{CT}_{2,1}$ | $\mathrm{CT}_{2,2}$ | \cdots | $\mathrm{CT}_{2, c}$ |
| \vdots | \vdots | \ddots | \vdots |
| $C T_{\omega, 1}$ | $\mathrm{CT}_{\omega, 2}$ | \cdots | $\mathrm{CT}_{\omega, c}$ |

\oplus

Applying DFA on LS-Designs

General principle

2 of 15
General principle

$\oplus \oplus$$\oplus$| $\mathrm{CT}_{2,1}$ | $\mathrm{CT}_{2,2}$ | \cdots | $\mathrm{CT}_{2, c}$ |
| :---: | :---: | :---: | :---: |
| \vdots | \vdots | \ddots | \vdots |
| $\mathrm{CT}_{\omega, 2}$ | $\mathrm{CT}_{\omega, 2}$ | \cdots | $\mathrm{CT}_{\omega, c}$ |

\oplus

\oplus

Applying DFA on LS-Designs

General principle

2 of 15
General principle

Applying DFA on LS-Designs

General principle

2 of 15
General principle

Applying DFA on LS-Designs

General principle

2 of 15
General principle

Applying DFA on LS-Designs

General principle

2 of 15

General principle

Applying DFA on LS-Designs

General principle

2 of 15

General principle

Applying DFA on LS-Designs

General principle

2 of 15

General principle

Applying DFA on LS-Designs

General principle
 2 of 15

General principle

Applying DFA on LS-Designs

General principle
 2 of 15

General principle

Applying DFA on LS-Designs

Differential properties of S-box
3 of 15

Proposition

Let \mathcal{S} be an n-bit S-box. Let $\left(a_{1}, b_{1}\right)$ and $\left(a_{2}, b_{2}\right)$ be two differentials with $a_{1} \neq a_{2}$ such that the system of two equations

$$
\begin{align*}
& \mathcal{S}\left(x \oplus a_{1}\right) \oplus \mathcal{S}(x)=b_{1} \tag{1}\\
& \mathcal{S}\left(x \oplus a_{2}\right) \oplus \mathcal{S}(x)=b_{2} \tag{2}
\end{align*}
$$

has at least two solutions. Then, each of the three equations (1), (2) and

$$
\begin{equation*}
\mathcal{S}\left(x \oplus a_{1} \oplus a_{2}\right) \oplus \mathcal{S}(x)=b_{1} \oplus b_{2} \tag{3}
\end{equation*}
$$

has at least four solutions.
Mathematical exploited relations

Applying DFA on LS-Designs

Differential properties of S-box
3 of 15

Proposition

Let \mathcal{S} be an n-bit S-box. Let $\left(a_{1}, b_{1}\right)$ and $\left(a_{2}, b_{2}\right)$ be two differentials with $a_{1} \neq a_{2}$ such that the system of two equations

$$
\begin{align*}
& \mathcal{S}\left(x \oplus a_{1}\right) \oplus \mathcal{S}(x)=b_{1} \tag{1}\\
& \mathcal{S}\left(x \oplus a_{2}\right) \oplus \mathcal{S}(x)=b_{2} \tag{2}
\end{align*}
$$

has at least two solutions. Then, each of the three equations (1), (2) and

$$
\begin{equation*}
\mathcal{S}\left(x \oplus a_{1} \oplus a_{2}\right) \oplus \mathcal{S}(x)=b_{1} \oplus b_{2} \tag{3}
\end{equation*}
$$

has at least four solutions.

- Mathematical exploited relations

Obtaining information on the key is possible from each ω-bit word $1 \leq i \leq c$:

$$
x=\mathcal{L}^{-1}\left(\mathrm{CT} \oplus C^{(r)} \oplus K\right)[i] \text { and } y=\mathcal{L}^{-1}\left(\mathrm{CT}^{*} \oplus C^{(r)} \oplus K\right)[i]
$$

Applying DFA on LS-Designs

Differential properties of S-box
3 of 15

Proposition

Let \mathcal{S} be an n-bit S-box. Let $\left(a_{1}, b_{1}\right)$ and $\left(a_{2}, b_{2}\right)$ be two differentials with $a_{1} \neq a_{2}$ such that the system of two equations

$$
\begin{align*}
& \mathcal{S}\left(x \oplus a_{1}\right) \oplus \mathcal{S}(x)=b_{1} \tag{1}\\
& \mathcal{S}\left(x \oplus a_{2}\right) \oplus \mathcal{S}(x)=b_{2} \tag{2}
\end{align*}
$$

has at least two solutions. Then, each of the three equations (1), (2) and

$$
\begin{equation*}
\mathcal{S}\left(x \oplus a_{1} \oplus a_{2}\right) \oplus \mathcal{S}(x)=b_{1} \oplus b_{2} \tag{3}
\end{equation*}
$$

has at least four solutions.

- Mathematical exploited relations

Obtaining information on the key is possible from each ω-bit word $1 \leq i \leq c$:

$$
\begin{gathered}
x=\mathcal{L}^{-1}\left(\mathrm{CT} \oplus C^{(r)} \oplus K\right)[i] \text { and } y=\mathcal{L}^{-1}\left(\mathrm{CT}^{*} \oplus C^{(r)} \oplus K\right)[i] \\
\text { satisfy } \\
x \oplus y=\mathcal{L}^{-1}\left(\mathrm{CT} \oplus \mathrm{CT}^{*}\right)=\Delta Y^{(r)}[i]=a_{1}
\end{gathered}
$$

Applying DFA on LS-Designs

Differential properties of S-box
3 of 15

Proposition

Let \mathcal{S} be an n-bit S-box. Let $\left(a_{1}, b_{1}\right)$ and $\left(a_{2}, b_{2}\right)$ be two differentials with $a_{1} \neq a_{2}$ such that the system of two equations

$$
\begin{align*}
& \mathcal{S}\left(x \oplus a_{1}\right) \oplus \mathcal{S}(x)=b_{1} \tag{1}\\
& \mathcal{S}\left(x \oplus a_{2}\right) \oplus \mathcal{S}(x)=b_{2} \tag{2}
\end{align*}
$$

has at least two solutions. Then, each of the three equations (1), (2) and

$$
\begin{equation*}
\mathcal{S}\left(x \oplus a_{1} \oplus a_{2}\right) \oplus \mathcal{S}(x)=b_{1} \oplus b_{2} \tag{3}
\end{equation*}
$$

has at least four solutions.

- Mathematical exploited relations

Obtaining information on the key is possible from each ω-bit word $1 \leq i \leq c$:

$$
\begin{gathered}
x=\mathcal{L}^{-1}\left(\mathrm{CT} \oplus C^{(r)} \oplus K\right)[i] \begin{array}{c}
\text { and } y=\mathcal{L}^{-1}\left(\mathrm{CT}^{*} \oplus C^{(r)} \oplus K\right)[i] \\
\text { satisfy } \\
x \oplus y=\mathcal{L}^{-1}\left(\mathrm{CT} \oplus \mathrm{CT}^{*}\right)=\Delta Y^{(r)}[i]=a_{1} \\
\quad \text { and } \\
\mathcal{S}^{-1}(x) \oplus \mathcal{S}^{-1}(y)=\Delta X^{(r)}[i]=2^{\omega-j}=b_{1}
\end{array} .
\end{gathered}
$$

Applying DFA on LS-Designs
Ideal fault model
4 of 15

Ideal fault model

- Find $b_{1}=\Delta X_{1}^{(r)}=2^{\omega-i_{1}}$ and $b_{2}=\Delta X_{2}^{(r)}=2^{\omega-i_{2}}$ with $1 \leq i_{1}<i_{2} \leq \omega$ such that $\left(a_{1}, b_{1}\right)$ and $\left(a_{2}, b_{2}\right)$ are simultaneously satisfied for a single element for all a_{1} and a_{2}.
last substitution layer with two successive fault injections
in order to retrieve the comolete secret kev.

Exploitable differential pairs

Applying DFA on LS-Designs

Ideal fault model
4 of 15

Ideal fault model

- Find $b_{1}=\Delta X_{1}^{(r)}=2^{\omega-i_{1}}$ and $b_{2}=\Delta X_{2}^{(r)}=2^{\omega-i_{2}}$ with $1 \leq i_{1}<i_{2} \leq \omega$ such that $\left(a_{1}, b_{1}\right)$ and $\left(a_{2}, b_{2}\right)$ are simultaneously satisfied for a single element for all a_{1} and a_{2}.
- Flip the row i_{1} then the row i_{2} of the state before the last substitution layer with two successive fault injections in order to retrieve the complete secret key.

Exploitable differential pairs

Applying DFA on LS-Designs
Ideal fault model
4 of 15

Ideal fault model

- Find $b_{1}=\Delta X_{1}^{(r)}=2^{\omega-i_{1}}$ and $b_{2}=\Delta X_{2}^{(r)}=2^{\omega-i_{2}}$ with $1 \leq i_{1}<i_{2} \leq \omega$ such that $\left(a_{1}, b_{1}\right)$ and $\left(a_{2}, b_{2}\right)$ are simultaneously satisfied for a single element for all a_{1} and a_{2}.
- Flip the row i_{1} then the row i_{2} of the state before the last substitution layer with two successive fault injections in order to retrieve the complete secret key.

Exploitable differential pairs

Cipher	Pair
PRIDE	$\left(a_{1}, 0 \times 1\right),\left(a_{2}, 0 \times 8\right)$
Robin	$\left(a_{1}, 0 \times 01\right),\left(a_{2}, 0 \times 40\right)$
Fantomas	$\left(a_{1}, 0 \times 01\right),\left(a_{2}, 0 \times 80\right)$
Scream	$\left(a_{1}, 0 \times 01\right),\left(a_{2}, 0 \times 02\right)$
iScream	$\left(a_{1}, 0 \times 02\right),\left(a_{2}, 0 \times 80\right)$

Applying DFA on LS-Designs

Random fault model
5 of 15

- Random fault model

- Target the same $b_{1}=\Delta X_{1}^{(r)}=2^{\omega-i_{1}}$ and $b_{2}=\Delta X_{2}^{(r)}=2^{\omega-i_{2}}$.

Applying DFA on LS-Designs

Random fault model

- Random fault model

- Target the same $b_{1}=\Delta X_{1}^{(r)}=2^{\omega-i_{1}}$ and $b_{2}=\Delta X_{2}^{(r)}=2^{\omega-i_{2}}$.
- Let A_{1} (resp. A_{2}) be the average number of remaining candidates for a ω-bit key word obtained from a fault on row i_{1} (resp. i_{2}).

Applying DFA on LS-Designs

Random fault model

- Random fault model

- Target the same $b_{1}=\Delta X_{1}^{(r)}=2^{\omega-i_{1}}$ and $b_{2}=\Delta X_{2}^{(r)}=2^{\omega-i_{2}}$.
- Let A_{1} (resp. A_{2}) be the average number of remaining candidates for a ω-bit key word obtained from a fault on row i_{1} (resp. i_{2}).
- Let m_{1} (resp. m_{2}) denote the number of obtained faults on row i_{1} (resp. i_{2}).

Applying DFA on LS-Designs
Random fault model
5 of 15

- Random fault model

- Target the same $b_{1}=\Delta X_{1}^{(r)}=2^{\omega-i_{1}}$ and $b_{2}=\Delta X_{2}^{(r)}=2^{\omega-i_{2}}$.
- Let A_{1} (resp. A_{2}) be the average number of remaining candidates for a ω-bit key word obtained from a fault on row i_{1} (resp. i_{2}).
- Let m_{1} (resp. m_{2}) denote the number of obtained faults on row i_{1} (resp. i_{2}). Then, the number N of remaining candidates for the key is:

$$
\left(\frac{2^{\omega}}{2^{m_{1}+m_{2}}}+\sum_{i=1}^{m_{1}} \frac{A_{1}}{2^{i+m_{2}}}+\sum_{i=1}^{m_{2}} \frac{A_{2}}{2^{i+m_{1}}}+\left(\sum_{i=1}^{m_{1}} \frac{1}{2^{i}}\right)\left(\sum_{i=1}^{m_{2}} \frac{1}{2^{i}}\right)\right)^{c}
$$

Applying DFA on LS-Designs
Random fault model
5 of 15

- Random fault model

- Target the same $b_{1}=\Delta X_{1}^{(r)}=2^{\omega-i_{1}}$ and $b_{2}=\Delta X_{2}^{(r)}=2^{\omega-i_{2}}$.
- Let A_{1} (resp. A_{2}) be the average number of remaining candidates for a ω-bit key word obtained from a fault on row i_{1} (resp. i_{2}).
- Let m_{1} (resp. m_{2}) denote the number of obtained faults on row i_{1} (resp. i_{2}).

Then, the number N of remaining candidates for the key is:

$$
\left(\frac{2^{\omega}}{2^{m_{1}+m_{2}}}+\sum_{i=1}^{m_{1}} \frac{A_{1}}{2^{i+m_{2}}}+\sum_{i=1}^{m_{2}} \frac{A_{2}}{2^{i+m_{1}}}+\left(\sum_{i=1}^{m_{1}} \frac{1}{2^{i}}\right)\left(\sum_{i=1}^{m_{2}} \frac{1}{2^{i}}\right)\right)^{c}
$$

Indeed, from m faults, an attacker obtains no difference on a ω-bit word with probability $1 / 2^{m}$, she obtains at least one difference with probability $\sum_{i=1}^{m} 1 / 2^{i}=\left(2^{m}-1\right) / 2^{m}$.

Applying DFA on LS-Designs
Random fault model
5 of 15

- Random fault model

- Target the same $b_{1}=\Delta X_{1}^{(r)}=2^{\omega-i_{1}}$ and $b_{2}=\Delta X_{2}^{(r)}=2^{\omega-i_{2}}$.
- Let A_{1} (resp. A_{2}) be the average number of remaining candidates for a ω-bit key word obtained from a fault on row i_{1} (resp. i_{2}).
- Let m_{1} (resp. m_{2}) denote the number of obtained faults on row i_{1} (resp. i_{2}).

Then, the number N of remaining candidates for the key is:

$$
\left(\frac{2^{\omega}}{2^{m_{1}+m_{2}}}+\sum_{i=1}^{m_{1}} \frac{A_{1}}{2^{i+m_{2}}}+\sum_{i=1}^{m_{2}} \frac{A_{2}}{2^{i+m_{1}}}+\left(\sum_{i=1}^{m_{1}} \frac{1}{2^{i}}\right)\left(\sum_{i=1}^{m_{2}} \frac{1}{2^{i}}\right)\right)^{c}
$$

Indeed, from m faults, an attacker obtains no difference on a ω-bit word with probability $1 / 2^{m}$, she obtains at least one difference with probability $\sum_{i=1}^{m} 1 / 2^{i}=\left(2^{m}-1\right) / 2^{m}$. We then deduce that N is equal to:

$$
\left(\frac{2^{\omega}+A_{1}\left(2^{m_{1}}-1\right)+A_{2}\left(2^{m_{2}}-1\right)+\left(2^{m_{1}}-1\right)\left(2^{m_{2}}-1\right)}{2^{m_{1}+m_{2}}}\right)^{c}
$$

Applying DFA on LS-Designs

Properties that make the attack effective
6 of 15

- The design of the linear layer
- Flip a c-bit row of the state before the substitution layer activates all S-boxes at its input.

Applying DFA on LS-Designs

Properties that make the attack effective
6 of 15

- The design of the linear layer
- Flip a c-bit row of the state before the substitution layer activates all S-boxes at its input.
- Use this property on the last substitution layer allows the attacker to recover information on all ω-bit words of K.

Applying DFA on LS-Designs

Properties that make the attack effective
6 of 15

The design of the linear layer

- Flip a c-bit row of the state before the substitution layer activates all S-boxes at its input.
- Use this property on the last substitution layer allows the attacker to recover information on all ω-bit words of K.
- The number of remaining candidates is at most δ^{c}, where δ is the differential-uniformity of the S-box.

The differential properties of the S-box

Applying DFA on LS-Designs
 Properties that make the attack effective 6 of 15

- The design of the linear layer
- Flip a c-bit row of the state before the substitution layer activates all S-boxes at its input.
- Use this property on the last substitution layer allows the attacker to recover information on all ω-bit words of K.
- The number of remaining candidates is at most δ^{c}, where δ is the differential-uniformity of the S-box.

The differential properties of the S-box

- The number of inputs which satisfy two valid differentials simultaneously is usually reduced to a single element.

Applying DFA on LS-Designs

Properties that make the attack effective

The design of the linear layer

- Flip a c-bit row of the state before the substitution layer activates all S-boxes at its input.
- Use this property on the last substitution layer allows the attacker to recover information on all ω-bit words of K.
- The number of remaining candidates is at most δ^{c}, where δ is the differential-uniformity of the S-box.

The differential properties of the S-box

- The number of inputs which satisfy two valid differentials simultaneously is usually reduced to a single element.
- It is therefore sufficient to find two differences $2^{\omega-i}$ and $2^{\omega-j}$ which verify it and to flip the i-th row then the j-th row before the last substitution layer.

Practical implementation of the DFA on SCREAM

(1) LS-Designs

- Applying DFA on LS-Designs
- General principle
- Depending on the fault model
(3) Practical implementation of the DFA on SCREAM
- The TAE mode SCREAM
- DFA on SCREAM
- Practical implementation
(4) Countermeasures
- Modes of operation
- Masking
- Internal Redundancy Countermeasure
(5) Conclusion and perspectives
- Tweakable Authenticated Encryption (TAE) mode

Tweakey scheduling algorithm of Scream

- Tweakable Authenticated Encryption (TAE) mode

Tweakey scheduling algorithm of Scream
Scream is an iterative block cipher composed of N_{s} steps, each of them made of $N_{\text {r }}$
rounds, introduced by Grosso in 2014 . It takes as inputs a 128 -bit block, a 128 -bit key
K and a 128 -bit tweak $T=t_{0} \| t_{1}$. The tweak is used as a "lightweight key schedule".

- Tweakable Authenticated Encryption (TAE) mode

Tweakey scheduling algorithm of Scream

■ Tweakable Authenticated Encryption (TAE) mode

Tweakey scheduling algorithm of Scream
Scream is an iterative block cipher composed of N_{s} steps, each of them made of N_{r} rounds, introduced by Grosso in 2014. It takes as inputs a 128 -bit block, a 128 -bit key K and a 128-bit tweak $T=t_{0} \| t_{1}$.

- Tweakable Authenticated Encryption (TAE) mode

Tweakey scheduling algorithm of Scream
Scream is an iterative block cipher composed of N_{s} steps, each of them made of N_{r} rounds, introduced by Grosso in 2014. It takes as inputs a 128 -bit block, a 128 -bit key K and a 128 -bit tweak $T=t_{0} \| t_{1}$. The tweak is used as a "lightweight key schedule". The output of the step s is added by an XOR to a subkey equal to:

$$
\begin{array}{ll}
K \oplus\left(t_{0} \| t_{1}\right) & \text { if } s=3 i, \\
K \oplus\left(t_{0} \oplus t_{1} \| t_{0}\right) & \text { if } s=3 i+1, \\
K \oplus\left(t_{1} \| t_{0} \oplus t_{1}\right) & \text { if } s=3 i+2 .
\end{array}
$$

Practical implementation of the DFA on SCREAM DFA on SCREAM
 8 of 15

■ DFA on SCREAM

- Target the last two rows to obtain differentials ($a_{1}, 0 \times 01$) (resp. ($a_{2}, 0 \times 02$)) which allows to obtain $A_{1} \approx 2.286$ (resp. $A_{2} \approx 2.639$) candidates on some key bytes.

Practical implementation of the DFA on SCREAM DFA on SCREAM
 8 of 15

- DFA on SCREAM

- Target the last two rows to obtain differentials ($a_{1}, 0 \times 01$) (resp. ($a_{2}, 0 \times 02$)) which allows to obtain $A_{1} \approx 2.286$ (resp. $A_{2} \approx 2.639$) candidates on some key bytes.
- The inner state is represented as a 8×16 bit array.

Practical implementation of the DFA on SCREAM
 DFA on SCREAM
 8 of 15

■ DFA on SCREAM

- Target the last two rows to obtain differentials ($a_{1}, 0 \times 01$) (resp. $\left(a_{2}, 0 \times 02\right)$) which allows to obtain $A_{1} \approx 2.286$ (resp. $A_{2} \approx 2.639$) candidates on some key bytes.
- The inner state is represented as a 8×16 bit array.

Therefore, the average number of remaining candidates for the key from m_{1} (resp. m_{2}) random faults on the last (resp. penultimate) row is approximately:

$$
\left(\frac{252.075}{2^{m_{1}+m_{2}}}+\frac{1.286}{2^{m_{2}}}+\frac{1.639}{2^{m_{1}}}+1\right)^{16}
$$

Practical implementation of the DFA on SCREAM
 DFA on SCREAM
 8 of 15

■ DFA on SCREAM

- Target the last two rows to obtain differentials ($a_{1}, 0 \times 01$) (resp. $\left(a_{2}, 0 \times 02\right)$) which allows to obtain $A_{1} \approx 2.286$ (resp. $A_{2} \approx 2.639$) candidates on some key bytes.
- The inner state is represented as a 8×16 bit array.

Therefore, the average number of remaining candidates for the key from m_{1} (resp. m_{2}) random faults on the last (resp. penultimate) row is approximately:

$$
\left(\frac{252.075}{2^{m_{1}+m_{2}}}+\frac{1.286}{2^{m_{2}}}+\frac{1.639}{2^{m_{1}}}+1\right)^{16}
$$

Practical implementation of the DFA on SCREAM
 DFA on SCREAM
 8 of 15

■ DFA on SCREAM

- Target the last two rows to obtain differentials ($a_{1}, 0 \times 01$) (resp. $\left(a_{2}, 0 \times 02\right)$) which allows to obtain $A_{1} \approx 2.286$ (resp. $A_{2} \approx 2.639$) candidates on some key bytes.
- The inner state is represented as a 8×16 bit array.

Therefore, the average number of remaining candidates for the key from m_{1} (resp. m_{2}) random faults on the last (resp. penultimate) row is approximately:

$$
\left(\frac{252.075}{2^{m_{1}+m_{2}}}+\frac{1.286}{2^{m_{2}}}+\frac{1.639}{2^{m_{1}}}+1\right)^{16}
$$

Practical implementation of the DFA on SCREAM
 DFA on SCREAM
 8 of 15

■ DFA on SCREAM

- Target the last two rows to obtain differentials ($a_{1}, 0 \times 01$) (resp. $\left(a_{2}, 0 \times 02\right)$) which allows to obtain $A_{1} \approx 2.286$ (resp. $A_{2} \approx 2.639$) candidates on some key bytes.
- The inner state is represented as a 8×16 bit array.

Therefore, the average number of remaining candidates for the key from m_{1} (resp. m_{2}) random faults on the last (resp. penultimate) row is approximately:

$$
\left(\frac{252.075}{2^{m_{1}+m_{2}}}+\frac{1.286}{2^{m_{2}}}+\frac{1.639}{2^{m_{1}}}+1\right)^{16}
$$

Practical implementation of the DFA on SCREAM
 DFA on SCREAM
 8 of 15

■ DFA on SCREAM

- Target the last two rows to obtain differentials ($a_{1}, 0 \times 01$) (resp. $\left(a_{2}, 0 \times 02\right)$) which allows to obtain $A_{1} \approx 2.286$ (resp. $A_{2} \approx 2.639$) candidates on some key bytes.
- The inner state is represented as a 8×16 bit array.

Therefore, the average number of remaining candidates for the key from m_{1} (resp. m_{2}) random faults on the last (resp. penultimate) row is approximately:

$$
\left(\frac{252.075}{2^{m_{1}+m_{2}}}+\frac{1.286}{2^{m_{2}}}+\frac{1.639}{2^{m_{1}}}+1\right)^{16}
$$

Practical implementation of the DFA on SCREAM
 DFA on SCREAM
 8 of 15

■ DFA on SCREAM

- Target the last two rows to obtain differentials ($a_{1}, 0 \times 01$) (resp. ($a_{2}, 0 \times 02$) which allows to obtain $A_{1} \approx 2.286$ (resp. $A_{2} \approx 2.639$) candidates on some key bytes.
- The inner state is represented as a 8×16 bit array.

Therefore, the average number of remaining candidates for the key from m_{1} (resp. m_{2}) random faults on the last (resp. penultimate) row is approximately:

$$
\left(\frac{252.075}{2^{m_{1}+m_{2}}}+\frac{1.286}{2^{m_{2}}}+\frac{1.639}{2^{m_{1}}}+1\right)^{16}
$$

Practical implementation of the DFA on SCREAM
 DFA on SCREAM
 8 of 15

■ DFA on SCREAM

- Target the last two rows to obtain differentials ($a_{1}, 0 \times 01$) (resp. ($a_{2}, 0 \times 02$) which allows to obtain $A_{1} \approx 2.286$ (resp. $A_{2} \approx 2.639$) candidates on some key bytes.
- The inner state is represented as a 8×16 bit array.

Therefore, the average number of remaining candidates for the key from m_{1} (resp. m_{2}) random faults on the last (resp. penultimate) row is approximately:

$$
\left(\frac{252.075}{2^{m_{1}+m_{2}}}+\frac{1.286}{2^{m_{2}}}+\frac{1.639}{2^{m_{1}}}+1\right)^{16}
$$

Practical implementation of the DFA on SCREAM

Practical implementation
9 of 15

The faults injection device

We used electromagnetic pulses to disrupt SCREAM execution. This approach requires no decapsulation of the chip and allows to precisely target a given time.

The SCREAM implementation used
We have implemented and run the 128 -bit reference VHDL code of SCREAM

The input parameters were a 88 -bit nonce, 2 ass. data blocks and

Practical implementation of the DFA on SCREAM

Practical implementation
9 of 15

The faults injection device

We used electromagnetic pulses to disrupt SCREAM execution. This approach requires no decapsulation of the chip and allows to precisely target a given time.

The SCREAM implementation used

- We have implemented and run the 128-bit reference VHDL code of SCREAM.

Practical implementation of the DFA on SCREAM

Practical implementation
9 of 15

The faults injection device

We used electromagnetic pulses to disrupt SCREAM execution. This approach requires no decapsulation of the chip and allows to precisely target a given time.

The SCREAM implementation used

- We have implemented and run the 128-bit reference VHDL code of SCREAM.
- The FPGA die was composed of components CRYPTO, UART and FSM.

Practical implementation of the DFA on SCREAM

Practical implementation
9 of 15

The faults injection device

We used electromagnetic pulses to disrupt SCREAM execution. This approach requires no decapsulation of the chip and allows to precisely target a given time.

The SCREAM implementation used

- We have implemented and run the 128 -bit reference VHDL code of SCREAM.
- The FPGA die was composed of components CRYPTO, UART and FSM.
- The input parameters were a 88 -bit nonce, 2 ass. data blocks and 3 data blocks.

Practical implementation of the DFA on SCREAM

Practical implementation
10 of 15
Electromagnetic radiations analysis of SCREAM

On each, we tested 11 different temporal positions

Electromagnetic radiations analysis of SCREAM

Practical implementation of the DFA on SCREAM

Practical implementation
10 of 15
Electromagnetic radiations analysis of SCREAM

Cartography of the obtained faults on the full chip The pulses were injected on 100 spatial positions distributed on a 10×10 grid
\qquad
\qquad

Practical implementation of the DFA on SCREAM

Practical implementation
10 of 15
Electromagnetic radiations analysis of SCREAM

Cartography of the obtained faults on the full chip - The pulses were injected on 100 spatial positions distributed on a 10×10 grid.

E Electromagnetic radiations analysis of SCREAM

Cartography of the obtained faults on the full chip - The pulses were injected on 100 spatial positions distributed on a 10×10 grid.

- On each, we tested 11 different temporal positions, 4 different voltages and we injected 2 pulses.

Electromagnetic radiations analysis of SCREAM

Cartography of the obtained faults on the full chip - The pulses were injected on 100 spatial positions distributed on a 10×10 grid.

- On each, we tested 11 different temporal positions, 4 different voltages and we injected 2 pulses.
- On the 8800 injections, we obtained 465 faults of which at most 88 to one spatial position.

Practical implementation of the DFA on SCREAM

Practical implementation
11 of 15
■ All obtained faults

- A total of 69250 pulses were injected on the sensitive area of the chip. We obtained 2482 faults, among which 937 were different.

Gained knowledge

Practical implementation of the DFA on SCREAM

Practical implementation
11 of 15
■ All obtained faults

- A total of 69250 pulses were injected on the sensitive area of the chip. We obtained 2482 faults, among which 937 were different.
- For each fault, we verified if each byte could have been obtained by the same difference equal to 2^{j} with $0 \leq j \leq 7$ in input of the last substitution layer.

Gained knowledge

Practical implementation of the DFA on SCREAM

Practical implementation
11 of 15
■ All obtained faults

- A total of 69250 pulses were injected on the sensitive area of the chip. We obtained 2482 faults, among which 937 were different.
- For each fault, we verified if each byte could have been obtained by the same difference equal to 2^{j} with $0 \leq j \leq 7$ in input of the last substitution layer.
- A total of 36 different faults complied with this property.

Gained knowledge

Practical implementation of the DFA on SCREAM
Practical implementation
11 of 15
E All obtained faults

- A total of 69250 pulses were injected on the sensitive area of the chip. We obtained 2482 faults, among which 937 were different.
- For each fault, we verified if each byte could have been obtained by the same difference equal to 2^{j} with $0 \leq j \leq 7$ in input of the last substitution layer.
- A total of 36 different faults complied with this property.

Gained knowledge

	$\begin{aligned} & i=1 \\ & i=2 \\ & i=3 \\ & i=4 \\ & i=5 \\ & i=6 \\ & i=7 \\ & i=8 \\ & i=9 \\ & i=10 \\ & i=11 \\ & i=12 \\ & i=13 \\ & i=14 \\ & i=15 \\ & i=16 \\ & \hline \end{aligned}$

$\Delta I n$			$\mathcal{L}^{-1}(\mathrm{CT} \oplus K \oplus T)[i] \oplus C^{(23)}[i]$
0x01	0×04	0x08	
0xb8	\emptyset	0×69	0×03
0×33	\emptyset	0×88	$0 \times 0 \mathrm{e}$
0×47	$0 \times 4 \mathrm{~b}$	\emptyset	$0 \times 2 \mathrm{e}$
0xca	0×54	$0 \times 3 \mathrm{a}$	0xef
0×19	\emptyset	\emptyset	$0 \times 2 \mathrm{~b}, 0 \times 32,0 \times 4 \mathrm{f}, 0 \times 56,0 \times 65$ or $0 \times 7 \mathrm{c}$
\emptyset	\emptyset	\emptyset	\emptyset
0x2a	\emptyset	\emptyset	$0 \times d 1$ or $0 \times f \mathrm{~b}$
0xd5	\emptyset	$0 \times 1 \mathrm{a}$	0xcb
0xd9	\emptyset	\emptyset	0×02 or $0 \times d b$
$0 \times 5 \mathrm{~d}$	\emptyset	0×58	$0 \times 3 \mathrm{f}$
0xfd	\emptyset	0xf9	0×48
Oxcc	\emptyset	0xbc	0×59
0x2a	\emptyset	$0 \times 1 \mathrm{a}$	$0 \times \mathrm{d} 1$
0×54	\emptyset	0xee	0xe4
0x8a	\emptyset	0×46	$0 \times 9 \mathrm{e}$
0xc2	\emptyset	0xe9	0×97

Practical implementation of the DFA on SCREAM
Practical implementation
11 of 15

- All obtained faults

- A total of 69250 pulses were injected on the sensitive area of the chip. We obtained 2482 faults, among which 937 were different.
- For each fault, we verified if each byte could have been obtained by the same difference equal to 2^{j} with $0 \leq j \leq 7$ in input of the last substitution layer.
- A total of 36 different faults complied with this property.

Gained knowledge

$\Delta I n$			$\mathcal{L}^{-1}(\mathrm{CT} \oplus K \oplus T)[i] \oplus C^{(23)}[i]$
\| 0x01	0×04	0x08	
0xb8	\emptyset	0xb9	0×03
0x33	\emptyset	0x88	$0 \times 0 \mathrm{e}$
0×47	0x4b	\emptyset	$0 \times 2 \mathrm{e}$
0xca	0×54	0x3a	0xef
0×19	\emptyset	\emptyset	$0 \times 2 \mathrm{~b}, 0 \times 32,0 \times 4 \mathrm{f}, 0 \times 56,0 \times 65$ or $0 \times 7 \mathrm{c}$
\emptyset	\emptyset	\emptyset	\emptyset
0x2a	\emptyset	\emptyset	$0 \times \mathrm{d} 1$ or 0xfb
0xd5	\emptyset	0x1a	$0 \times \mathrm{cb}$
0xd9	\emptyset	\emptyset	0×02 or $0 \times d b$
0x5d	\emptyset	0×58	$0 \times 3 \mathrm{f}$
0xfd	\emptyset	0xf9	0×48
0xcc	\emptyset	0xbc	0×59
0x2a	\emptyset	0x1a	0xd1
0×54	\emptyset	0xee	0xe4
0x8a	\emptyset	0×46	$0 \times 9 \mathrm{e}$
0xc2	\emptyset	0xe9	0×97

We eventually obtained $6144 \approx 2^{12.58}$ candidates for $\mathcal{L}^{-1}(\mathrm{CT} \oplus K \oplus T) \oplus C^{(23)}$.

Countermeasures

(1) LS-Designs
(G) Applying DFA on LS-Designs

- General principle
- Depending on the fault model
- The TAE mode SCREAM
- DFA on SCREAM
- Practical implementation

4 Countermeasures

- Modes of operation
- Masking
- Internal Redundancy Countermeasure
(5) Conclusion and perspectives

Countermeasures

Modes of operation

Cipher not applied to data

In order to encrypt data, a block cipher is always used with a mode of operation. It turns out that some well-known modes - standardized and already used in practice thwart our DFA. It is the case for the modes which use an nonce to encrypt data.

Cipher not applied to data

In order to encrypt data, a block cipher is always used with a mode of operation. It turns out that some well-known modes - standardized and already used in practice thwart our DFA. It is the case for the modes which use an nonce to encrypt data.

OFB mode encryption

Cipher not applied to data

In order to encrypt data, a block cipher is always used with a mode of operation. It turns out that some well-known modes - standardized and already used in practice thwart our DFA. It is the case for the modes which use an nonce to encrypt data.

CTR mode encryption

Cipher not applied to data

In order to encrypt data, a block cipher is always used with a mode of operation. It turns out that some well-known modes - standardized and already used in practice thwart our DFA. It is the case for the modes which use an nonce to encrypt data.

CTR mode encryption
Cipher applied to data

CBC mode encryption

Cipher not applied to data

In order to encrypt data, a block cipher is always used with a mode of operation. It turns out that some well-known modes - standardized and already used in practice thwart our DFA. It is the case for the modes which use an nonce to encrypt data.

CTR mode encryption
Cipher applied to data

CBC mode encryption
In this case, the IV must be unpredictable by the attacker in advance, otherwise:

$$
\forall\left(I V_{1}, I V_{2}\right), \exists\left(P_{1}, P_{2}\right) \text { such that } P_{1} \oplus I V_{1}=P_{2} \oplus I V_{2}
$$

Countermeasures

Masking

E Description
Add a random value RV to the state SM in the middle of the encryption \mathcal{E}_{K}.

E Description

Add a random value RV to the state SM in the middle of the encryption \mathcal{E}_{K}.

Then, to mount a DFA on the encryption, an attacker must obtain a correct ciphertext From the birthday paradox, this requires $2^{n / 2}$ fault injections where n is the block size.

■ Description

Add a random value RV to the state SM in the middle of the encryption \mathcal{E}_{K}.

Then, to mount a DFA on the encryption, an attacker must obtain a correct ciphertext $C=\mathcal{E}_{K}^{(1)}\left(\mathcal{E}_{K}^{(0)}\left(P_{1}\right) \oplus R V_{1}\right)$ and a faulty one $C^{*}=\mathcal{E}_{K}^{(1)}\left(\mathcal{E}_{K}^{(0)}\left(P_{2}\right) \oplus R V_{2}\right)$ such that:

$$
\mathcal{E}_{K}^{(0)}\left(P_{1}\right) \oplus R V_{1}=\mathcal{E}_{K}^{(0)}\left(P_{2}\right) \oplus R V_{2} .
$$

From the birthday paradox, this requires $2^{n / 2}$ fault injections where n is the block size.

Countermeasures
Masking
13 of 15

E Description

Add a random value RV to the state SM in the middle of the encryption \mathcal{E}_{K}.

Then, to mount a DFA on the encryption, an attacker must obtain a correct ciphertext $C=\mathcal{E}_{K}^{(1)}\left(\mathcal{E}_{K}^{(0)}\left(P_{1}\right) \oplus R V_{1}\right)$ and a faulty one $C^{*}=\mathcal{E}_{K}^{(1)}\left(\mathcal{E}_{K}^{(0)}\left(P_{2}\right) \oplus R V_{2}\right)$ such that:

$$
\mathcal{E}_{K}^{(0)}\left(P_{1}\right) \oplus R V_{1}=\mathcal{E}_{K}^{(0)}\left(P_{2}\right) \oplus R V_{2} .
$$

From the birthday paradox, this requires $2^{n / 2}$ fault injections where n is the block size.

- Cost

The cost depends on the choice of the random mask generation. A simple LFSR implemented in hardware has a low cost with respect to loT constraints.

■ Description
IRC consists in using efficient 8-bit implementations but from 32-bit instructions systematically operating as a whole on the 4 bytes of a 32-bit word. It uses reference blocks to thwart fault attacks, especially skip instruction for which it is very effective.

■ Description

IRC consists in using efficient 8-bit implementations but from 32-bit instructions systematically operating as a whole on the 4 bytes of a 32-bit word. It uses reference blocks to thwart fault attacks, especially skip instruction for which it is very effective.

■ Description

IRC consists in using efficient 8-bit implementations but from 32-bit instructions systematically operating as a whole on the 4 bytes of a 32-bit word. It uses reference blocks to thwart fault attacks, especially skip instruction for which it is very effective.

■ Description

IRC consists in using efficient 8-bit implementations but from 32-bit instructions systematically operating as a whole on the 4 bytes of a 32-bit word. It uses reference blocks to thwart fault attacks, especially skip instruction for which it is very effective.

■ Description

IRC consists in using efficient 8-bit implementations but from 32-bit instructions systematically operating as a whole on the 4 bytes of a 32-bit word. It uses reference blocks to thwart fault attacks, especially skip instruction for which it is very effective.

■ Description

IRC consists in using efficient 8-bit implementations but from 32-bit instructions systematically operating as a whole on the 4 bytes of a 32-bit word. It uses reference blocks to thwart fault attacks, especially skip instruction for which it is very effective.

■ Description

IRC consists in using efficient 8-bit implementations but from 32-bit instructions systematically operating as a whole on the 4 bytes of a 32-bit word. It uses reference blocks to thwart fault attacks, especially skip instruction for which it is very effective.

■ Description

IRC consists in using efficient 8-bit implementations but from 32-bit instructions systematically operating as a whole on the 4 bytes of a 32-bit word. It uses reference blocks to thwart fault attacks, especially skip instruction for which it is very effective.

■ Description

IRC consists in using efficient 8-bit implementations but from 32-bit instructions systematically operating as a whole on the 4 bytes of a 32-bit word. It uses reference blocks to thwart fault attacks, especially skip instruction for which it is very effective.

■ Description

IRC consists in using efficient 8-bit implementations but from 32-bit instructions systematically operating as a whole on the 4 bytes of a 32-bit word. It uses reference blocks to thwart fault attacks, especially skip instruction for which it is very effective.

■ Description

IRC consists in using efficient 8-bit implementations but from 32-bit instructions systematically operating as a whole on the 4 bytes of a 32-bit word. It uses reference blocks to thwart fault attacks, especially skip instruction for which it is very effective.

Output	RC_{1}	C_{1}	RC_{1}	C_{1}	\cdots	RC_{b}	C_{b}	RC_{b}

■ Description

IRC consists in using efficient 8-bit implementations but from 32-bit instructions systematically operating as a whole on the 4 bytes of a 32-bit word. It uses reference blocks to thwart fault attacks, especially skip instruction for which it is very effective.

■ Description

IRC consists in using efficient 8-bit implementations but from 32-bit instructions systematically operating as a whole on the 4 bytes of a 32-bit word. It uses reference blocks to thwart fault attacks, especially skip instruction for which it is very effective.

■ Description

IRC consists in using efficient 8-bit implementations but from 32-bit instructions systematically operating as a whole on the 4 bytes of a 32-bit word. It uses reference blocks to thwart fault attacks, especially skip instruction for which it is very effective.

■ Description

IRC consists in using efficient 8-bit implementations but from 32-bit instructions systematically operating as a whole on the 4 bytes of a 32-bit word. It uses reference blocks to thwart fault attacks, especially skip instruction for which it is very effective.

■ Description

IRC consists in using efficient 8-bit implementations but from 32-bit instructions systematically operating as a whole on the 4 bytes of a 32-bit word. It uses reference blocks to thwart fault attacks, especially skip instruction for which it is very effective.

■ Description

IRC consists in using efficient 8-bit implementations but from 32-bit instructions systematically operating as a whole on the 4 bytes of a 32-bit word. It uses reference blocks to thwart fault attacks, especially skip instruction for which it is very effective.

■ Description

IRC consists in using efficient 8-bit implementations but from 32-bit instructions systematically operating as a whole on the 4 bytes of a 32-bit word. It uses reference blocks to thwart fault attacks, especially skip instruction for which it is very effective.

■ Description

IRC consists in using efficient 8-bit implementations but from 32-bit instructions systematically operating as a whole on the 4 bytes of a 32-bit word. It uses reference blocks to thwart fault attacks, especially skip instruction for which it is very effective.

■ Description

IRC consists in using efficient 8-bit implementations but from 32-bit instructions systematically operating as a whole on the 4 bytes of a 32-bit word. It uses reference blocks to thwart fault attacks, especially skip instruction for which it is very effective.

E Description

IRC consists in using efficient 8-bit implementations but from 32-bit instructions systematically operating as a whole on the 4 bytes of a 32-bit word. It uses reference blocks to thwart fault attacks, especially skip instruction for which it is very effective.

- Cost

IRC simply uses bitwise operators on 32-bit and use SIMD instructions - or masks depending on the targeted device - to replace nonlinear operations.

Countermeasures
Internal Redundancy Countermeasure

■ Description

IRC consists in using efficient 8-bit implementations but from 32-bit instructions systematically operating as a whole on the 4 bytes of a 32-bit word. It uses reference blocks to thwart fault attacks, especially skip instruction for which it is very effective.

Cost

IRC simply uses bitwise operators on 32-bit and use SIMD instructions - or masks depending on the targeted device - to replace nonlinear operations.
Therefore, we obtain performances close to those on an 8-bit architecture while having a structure that intrinsically protects against DFA.

Conclusion and perspectives

(1) LS-Designs

- Applying DFA on LS-Designs
- General principle
- Depending on the fault model
(5) Practical implementation of the DFA on SCREAM
- The TAE mode SCREAM
- DFA on SCREAM
- Practical implementation

4. Countermeasures

- Modes of operation
- Masking
- Internal Redundancy Countermeasure
(5) Conclusion and perspectives

Conclusion

- General method for Differential Fault Analysis on any block cipher based on LS-designs and other families of SPN with similar structures from only 2 faults in the best cases.

Conclusion and perspectives

Conclusion

- General method for Differential Fault Analysis on any block cipher based on LS-designs and other families of SPN with similar structures from only 2 faults in the best cases.
- Successfully perform such an attack against a hardware implementation of SCREAM, using the TLS-Design Scream with a fixed tweak.

Conclusion

- General method for Differential Fault Analysis on any block cipher based on LS-designs and other families of SPN with similar structures from only 2 faults in the best cases.
- Successfully perform such an attack against a hardware implementation of SCREAM, using the TLS-Design Scream with a fixed tweak.
- Faults were injected using EM pulses, which constitutes a low-cost means of injection.

Conclusion

- General method for Differential Fault Analysis on any block cipher based on LS-designs and other families of SPN with similar structures from only 2 faults in the best cases.
- Successfully perform such an attack against a hardware implementation of SCREAM, using the TLS-Design Scream with a fixed tweak.
- Faults were injected using EM pulses, which constitutes a low-cost means of injection.
- Resistance against DFA is important for an LS-Design, which will be dedicated to low-end devices thanks to its lightness.

Conclusion and perspectives

Conclusion

- General method for Differential Fault Analysis on any block cipher based on LS-designs and other families of SPN with similar structures from only 2 faults in the best cases.
- Successfully perform such an attack against a hardware implementation of SCREAM, using the TLS-Design Scream with a fixed tweak.
- Faults were injected using EM pulses, which constitutes a low-cost means of injection.
- Resistance against DFA is important for an LS-Design, which will be dedicated to low-end devices thanks to its lightness.
- Some countermeasures which leave the cipher still efficient for loT devices, especially a new kind of countermeasure: the so-called Internal Redundancy Countermeasure.

Conclusion and perspectives

Conclusion

- General method for Differential Fault Analysis on any block cipher based on LS-designs and other families of SPN with similar structures from only 2 faults in the best cases.
- Successfully perform such an attack against a hardware implementation of SCREAM, using the TLS-Design Scream with a fixed tweak.
- Faults were injected using EM pulses, which constitutes a low-cost means of injection.
- Resistance against DFA is important for an LS-Design, which will be dedicated to low-end devices thanks to its lightness.
- Some countermeasures which leave the cipher still efficient for loT devices, especially a new kind of countermeasure: the so-called Internal Redundancy Countermeasure.

- Perspectives

- Apply IRC on other block ciphers and also propose a generic method to deploy it on
 stream ciphers: will be studied in future work.
informatiques mathématiques
Unua

THANKS FOR YOUR ATTENTION

Commissariat à l'énergie atomique et aux énergies alternatives
Benjamin Lac I CEA-Tech/DPACA/LSAS
Public Industrial and Commercial Establishment I RCS Paris B 775685019

