

DFA ON LS-DESIGNS WITH A PRACTICAL IMPLEMENTATION ON SCREAM

Works presentation at COSADE 2017

Benjamin Lac^{1,5}, Anne Canteaut², Jacques J.A. Fournier³, Renaud Sirdey⁴

1 CEA-Tech, Gardanne, France, 2 Inria, Paris, France, 3 CEA-Leti, Grenoble, France, 4 CEA-List, Saclay, France, 5 ENSM-55; Saint-Étienne, France, {benjamin.lac, jacques.fournier, renaud.sirdey}@cea.fr, anne.canteaut@inria.fr

April 14th, 2017

www.cea.fr

2 Applying DFA on LS-Designs

- General principle
- Depending on the fault model

Practical implementation of the DFA on SCREAM

- The TAE mode SCREAM
- DFA on SCREAM
- Practical implementation

4 Countermeasures

- Modes of operation
- Masking
- Internal Redundancy Countermeasure

Sonclusion and perspectives

LS-Designs

General structure

An LS-Design is an iterative block cipher composed of r rounds, introduced by Grosso in 2014. It takes as input an n-bit block, uses an n-bit key and n-bit round constants.

The round function The inner state is represented as an $n = \omega \times c$ -bit array.

|--|--|--|--|--|

LS-Designs

General structure

An LS-Design is an iterative block cipher composed of r rounds, introduced by Grosso in 2014. It takes as input an n-bit block, uses an n-bit key and n-bit round constants.

The round function for a state of the round function of the state of the round function of the round state of the round state

|--|

LS-Designs

1 of 15

General structure

An LS-Design is an iterative block cipher composed of r rounds, introduced by Grosso in 2014. It takes as input an n-bit block, uses an n-bit key and n-bit round constants.

The round function for the second se

|--|

LS-Designs

1 of 15

General structure

An LS-Design is an iterative block cipher composed of r rounds, introduced by Grosso in 2014. It takes as input an n-bit block, uses an n-bit key and n-bit round constants.

The round function for contrast to the root of the ro

|--|

General structure

An LS-Design is an iterative block cipher composed of r rounds, introduced by Grosso in 2014. It takes as input an n-bit block, uses an n-bit key and n-bit round constants.

The round function

S_1 S_2		S_{n-1}	S_n	
-------------	--	-----------	-------	--

LS-Designs

General structure

An LS-Design is an iterative block cipher composed of r rounds, introduced by Grosso in 2014. It takes as input an n-bit block, uses an n-bit key and n-bit round constants.

The round function

LS-Designs

General structure

An LS-Design is an iterative block cipher composed of r rounds, introduced by Grosso in 2014. It takes as input an n-bit block, uses an n-bit key and n-bit round constants.

The round function

LS-Designs

General structure

An LS-Design is an iterative block cipher composed of r rounds, introduced by Grosso in 2014. It takes as input an n-bit block, uses an n-bit key and n-bit round constants.

The round function

LS-Designs

General structure

An LS-Design is an iterative block cipher composed of r rounds, introduced by Grosso in 2014. It takes as input an n-bit block, uses an n-bit key and n-bit round constants.

The round function

LS-Designs

General structure

An LS-Design is an iterative block cipher composed of r rounds, introduced by Grosso in 2014. It takes as input an n-bit block, uses an n-bit key and n-bit round constants.

The round function

LS-Designs

General structure

An LS-Design is an iterative block cipher composed of r rounds, introduced by Grosso in 2014. It takes as input an n-bit block, uses an n-bit key and n-bit round constants.

The round function

General structure

An LS-Design is an iterative block cipher composed of r rounds, introduced by Grosso in 2014. It takes as input an n-bit block, uses an n-bit key and n-bit round constants.

The round function

$S_{1,1}$	$S_{1,2}$		$S_{1,c}$
$S_{2,1}$	$S_{2,2}$		$S_{2,c}$
÷	:	$\gamma_{\rm h}$	÷
$S_{\omega,1}$	$S_{\omega,2}$		$S_{\omega,c}$

LS-Designs

General structure

An LS-Design is an iterative block cipher composed of r rounds, introduced by Grosso in 2014. It takes as input an n-bit block, uses an n-bit key and n-bit round constants.

The round function

LS-Designs

General structure

An LS-Design is an iterative block cipher composed of r rounds, introduced by Grosso in 2014. It takes as input an n-bit block, uses an n-bit key and n-bit round constants.

The round function

LS-Designs

General structure

An LS-Design is an iterative block cipher composed of r rounds, introduced by Grosso in 2014. It takes as input an n-bit block, uses an n-bit key and n-bit round constants.

The round function

LS-Designs

General structure

An LS-Design is an iterative block cipher composed of r rounds, introduced by Grosso in 2014. It takes as input an n-bit block, uses an n-bit key and n-bit round constants.

The round function

$X_{1,1}^{(1)}$	$X_{1,2}^{(1)}$		$X_{1,c}^{(1)}$
$X_{2,1}^{(1)}$	$X_{2,2}^{(1)}$		$X_{2,c}^{(1)}$
	÷	14	÷
$X^{(1)}_{\omega,1}$	$X^{(1)}_{\omega,2}$		$X^{(1)}_{\omega,c}$

General structure

An LS-Design is an iterative block cipher composed of r rounds, introduced by Grosso in 2014. It takes as input an n-bit block, uses an n-bit key and n-bit round constants.

The round function

LS-Designs

General structure

An LS-Design is an iterative block cipher composed of r rounds, introduced by Grosso in 2014. It takes as input an n-bit block, uses an n-bit key and n-bit round constants.

The round function

LS-Designs

General structure

An LS-Design is an iterative block cipher composed of r rounds, introduced by Grosso in 2014. It takes as input an n-bit block, uses an n-bit key and n-bit round constants.

The round function

LS-Designs

General structure

An LS-Design is an iterative block cipher composed of r rounds, introduced by Grosso in 2014. It takes as input an n-bit block, uses an n-bit key and n-bit round constants.

The round function

LS-Designs

General structure

An LS-Design is an iterative block cipher composed of r rounds, introduced by Grosso in 2014. It takes as input an n-bit block, uses an n-bit key and n-bit round constants.

The round function

General structure

An LS-Design is an iterative block cipher composed of r rounds, introduced by Grosso in 2014. It takes as input an n-bit block, uses an n-bit key and n-bit round constants.

The round function

General structure

An LS-Design is an iterative block cipher composed of r rounds, introduced by Grosso in 2014. It takes as input an n-bit block, uses an n-bit key and n-bit round constants.

The round function

$Y_{1,1}^{(1)}$	$Y_{1,2}^{(1)}$		$Y_{1,c}^{(1)}$	
$Y_{2,1}^{(1)}$	$Y_{2,2}^{(1)}$		$Y_{2,c}^{(1)}$	
:	÷	14	÷	
$Y^{(1)}_{\omega,1}$	$Y^{(1)}_{\omega,2}$		$Y^{(1)}_{\omega,c}$	

General structure

An LS-Design is an iterative block cipher composed of r rounds, introduced by Grosso in 2014. It takes as input an n-bit block, uses an n-bit key and n-bit round constants.

The round function

The inner state is represented as an $n = \omega \times c$ -bit array.

General structure

An LS-Design is an iterative block cipher composed of r rounds, introduced by Grosso in 2014. It takes as input an n-bit block, uses an n-bit key and n-bit round constants.

The round function

The inner state is represented as an $n = \omega \times c$ -bit array.

General structure

An LS-Design is an iterative block cipher composed of r rounds, introduced by Grosso in 2014. It takes as input an n-bit block, uses an n-bit key and n-bit round constants.

The round function

The inner state is represented as an $n = \omega \times c$ -bit array.

General structure

An LS-Design is an iterative block cipher composed of r rounds, introduced by Grosso in 2014. It takes as input an n-bit block, uses an n-bit key and n-bit round constants.

The round function

LS-Designs

General structure

An LS-Design is an iterative block cipher composed of r rounds, introduced by Grosso in 2014. It takes as input an n-bit block, uses an n-bit key and n-bit round constants.

The round function

LS-Designs

1 of 15

General structure

An LS-Design is an iterative block cipher composed of r rounds, introduced by Grosso in 2014. It takes as input an n-bit block, uses an n-bit key and n-bit round constants.

The round function

The inner state is represented as an $n = \omega \times c$ -bit array.

LS-Designs

General structure

An LS-Design is an iterative block cipher composed of r rounds, introduced by Grosso in 2014. It takes as input an n-bit block, uses an n-bit key and n-bit round constants.

The round function

The inner state is represented as an $n = \omega \times c$ -bit array.

LS-Designs

General structure

An LS-Design is an iterative block cipher composed of r rounds, introduced by Grosso in 2014. It takes as input an n-bit block, uses an n-bit key and n-bit round constants.

The round function

			$C_{1,1}^{(1)}$	$C_{1,2}^{(1)}$		$C_{1,c}^{(1)}$		$Z_{1,1}^{(1)}$	$Z_{1,2}^{(1)}$		$Z_{1,c}^{(1)}$
		D	$C_{2,1}^{(1)}$	$C_{2,2}^{(1)}$		$C_{2,c}^{(1)}$	Φ	$Z_{2,1}^{(1)}$	$Z_{2,2}^{(1)}$		$Z_{2,c}^{(1)}$
			÷	÷	А.		Ð	÷		14	÷
			$C^{(1)}_{\omega,1}$	$C^{(1)}_{\omega,2}$		$C^{(1)}_{\omega,c}$		$Z^{(1)}_{\omega,1}$	$Z^{(1)}_{\omega,2}$		$Z^{(1)}_{\omega,c}$

LS-Designs

General structure

An LS-Design is an iterative block cipher composed of r rounds, introduced by Grosso in 2014. It takes as input an n-bit block, uses an n-bit key and n-bit round constants.

The round function

$O_{1,1}^{(1)}$	$O_{1,2}^{(1)}$		$O_{1,c}^{(1)}$		$C_{1,1}^{(1)}$	$C_{1,2}^{(1)}$		$C_{1,c}^{(1)}$		$Z_{1,1}^{(1)}$	$Z_{1,2}^{(1)}$		$Z_{1,c}^{(1)}$
$O_{2,1}^{(1)}$	$O_{2,2}^{(1)}$		$O_{2,c}^{(1)}$	2	$C_{2,1}^{(1)}$	$C_{2,2}^{(1)}$		$C_{2,c}^{(1)}$	Φ	$Z_{2,1}^{(1)}$	$Z_{2,2}^{(1)}$		$Z_{2,c}^{(1)}$
÷	÷	14	÷	-	:	÷	А.		Ð	÷		Ч.	÷
$O_{\omega,1}^{(1)}$	$O^{(1)}_{\omega,2}$		$O^{(1)}_{\omega,c}$		$C^{(1)}_{\omega,1}$	$C^{(1)}_{\omega,2}$		$C^{(1)}_{\omega,c}$	/	$Z^{(1)}_{\omega,1}$	$Z^{(1)}_{\omega,2}$		$Z^{(1)}_{\omega,c}$

LS-Designs

General structure

An LS-Design is an iterative block cipher composed of r rounds, introduced by Grosso in 2014. It takes as input an n-bit block, uses an n-bit key and n-bit round constants.

The round function

$O_{1,1}^{(1)}$	$O_{1,2}^{(1)}$		$O_{1,c}^{(1)}$		$C_{1,1}^{(1)}$	$C_{1,2}^{(1)}$		$C_{1,c}^{(1)}$		$Z_{1,1}^{(1)}$	$Z_{1,2}^{(1)}$		$Z_{1,c}^{(1)}$
$O_{2,1}^{(1)}$	$O_{2,2}^{(1)}$		$O_{2,c}^{(1)}$	2	$C_{2,1}^{(1)}$	$C_{2,2}^{(1)}$		$C_{2,c}^{(1)}$	Φ	$Z_{2,1}^{(1)}$	$Z_{2,2}^{(1)}$		$Z_{2,c}^{(1)}$
÷	÷	14	÷	-	:	÷	Ч.		Ð	÷		Ч.	÷
$O^{(1)}_{\omega,1}$	$O^{(1)}_{\omega,2}$		$O^{(1)}_{\omega,c}$		$C^{(1)}_{\omega,1}$	$C^{(1)}_{\omega,2}$		$C^{(1)}_{\omega,c}$	/	$Z^{(1)}_{\omega,1}$	$Z^{(1)}_{\omega,2}$		$Z^{(1)}_{\omega,c}$

Applying DFA on LS-Designs

LS-Designs

Applying DFA on LS-Designs

 General principle
 Depending on the fault model

 Practical implementation of the DFA on SCI

 The TAE mode SCREAM
 DFA on SCREAM
 Practical implementation

 Countermeasures

 Modes of operation
 Masking
 Internal Redundancy Countermeasures

Applying DFA on LS-Designs

General principle

2 of 15

Benjamin Lac CEA-Tech/DPACA/LSAS

Applying DFA on LS-Designs

General principle

2 of 15

Benjamin Lac CEA-Tech/DPACA/LSAS

Applying DFA on LS-Designs

General principle

2 of 15

Benjamin Lac CEA-Tech/DPACA/LSAS

Applying DFA on LS-Designs

General principle

2 of 15

Applying DFA on LS-Designs

General principle

2 of 15

Benjamin Lac CEA-Tech/DPACA/LSAS

Applying DFA on LS-Designs

General principle

2 of 15

Applying DFA on LS-Designs

General principle

2 of 15

Benjamin Lac CEA-Tech/DPACA/LSAS

Applying DFA on LS-Designs

General principle

2 of 15

Applying DFA on LS-Designs

General principle

2 of 15

Benjamin Lac CEA-Tech/DPACA/LSAS

Applying DFA on LS-Designs

General principle

2 of 15

Benjamin Lac CEA-Tech/DPACA/LSAS

Applying DFA on LS-Designs

General principle

2 of 15

Applying DFA on LS-Designs

General principle

2 of 15

Applying DFA on LS-Designs

General principle

2 of 15

Applying DFA on LS-Designs

General principle

2 of 15

Applying DFA on LS-Designs

General principle

2 of 15

Applying DFA on LS-Designs

Differential properties of S-box

3 of 15

Proposition

Let S be an n-bit S-box. Let (a_1,b_1) and (a_2,b_2) be two differentials with $a_1\neq a_2$ such that the system of two equations

$$\mathcal{S}(x \oplus a_1) \oplus \mathcal{S}(x) = b_1 \tag{1}$$

$$\mathcal{S}(x \oplus a_2) \oplus \mathcal{S}(x) = b_2 \tag{2}$$

has at least two solutions. Then, each of the three equations (1), (2) and

$$\mathcal{S}(x \oplus a_1 \oplus a_2) \oplus \mathcal{S}(x) = b_1 \oplus b_2 \tag{3}$$

has at least four solutions.

Mathematical exploited relations Obtaining information on the key is possible from each ω -bit word $1\leq i$

$$\begin{split} x &= \mathcal{L}^{\pm 1}(\mathsf{CT} \oplus C^{(r)} \oplus K)[i] \text{ and } y = \mathcal{L}^{\pm 1}(\mathsf{CT}^* \oplus C^{(r)} \oplus K) \\ &\text{satisfy} \\ x \oplus y = \mathcal{L}^{\pm 1}(\mathsf{CT} \oplus \mathsf{CT}^*) = \Delta Y^{(r)}[i] = a_1 \\ &\text{and} \\ \mathcal{S}^{\pm 1}(x) \oplus \mathcal{S}^{\pm 1}(y) = \Delta X^{(r)}[i] = 2^{\omega - j} = b_1. \end{split}$$

Benjamin Lac CEA-Tech/DPACA/LSAS

Applying DFA on LS-Designs

Differential properties of S-box

3 of 15

Proposition

Let ${\cal S}$ be an n-bit S-box. Let (a_1,b_1) and (a_2,b_2) be two differentials with $a_1\neq a_2$ such that the system of two equations

$$\mathcal{S}(x \oplus a_1) \oplus \mathcal{S}(x) = b_1 \tag{1}$$

$$\mathcal{S}(x \oplus a_2) \oplus \mathcal{S}(x) = b_2 \tag{2}$$

has at least two solutions. Then, each of the three equations (1), (2) and

$$\mathcal{S}(x \oplus a_1 \oplus a_2) \oplus \mathcal{S}(x) = b_1 \oplus b_2$$
 (3)

has at least four solutions.

Mathematical exploited relations

Obtaining information on the key is possible from each ω -bit word $1 \le i \le c$:

$$\begin{aligned} x &= \mathcal{L}^{-1}(\mathsf{CT} \oplus C^{(r)} \oplus K)[i] \text{ and } y = \mathcal{L}^{-1}(\mathsf{CT}^* \oplus C^{(r)} \oplus K)[i] \\ \text{satisfy} \\ x \oplus y &= \mathcal{L}^{-1}(\mathsf{CT} \oplus \mathsf{CT}^*) = \Delta Y^{(r)}[i] = a_1 \\ \text{and} \\ S^{-1}(x) \oplus S^{-1}(y) = \Delta X^{(r)}[i] = 2^{\omega-j} = b_1. \end{aligned}$$

Applying DFA on LS-Designs

Differential properties of S-box

3 of 15

Proposition

Let S be an n-bit S-box. Let (a_1,b_1) and (a_2,b_2) be two differentials with $a_1\neq a_2$ such that the system of two equations

$$\mathcal{S}(x \oplus a_1) \oplus \mathcal{S}(x) = b_1 \tag{1}$$

$$\mathcal{S}(x \oplus a_2) \oplus \mathcal{S}(x) = b_2 \tag{2}$$

has at least two solutions. Then, each of the three equations (1), (2) and

$$\mathcal{S}(x \oplus a_1 \oplus a_2) \oplus \mathcal{S}(x) = b_1 \oplus b_2 \tag{3}$$

has at least four solutions.

Mathematical exploited relations

Obtaining information on the key is possible from each ω -bit word $1 \le i \le c$:

$$\begin{aligned} x &= \mathcal{L}^{-1}(\mathsf{CT} \oplus C^{(r)} \oplus K)[i] \text{ and } y = \mathcal{L}^{-1}(\mathsf{CT}^* \oplus C^{(r)} \oplus K)[i] \\ \text{satisfy} \\ x \oplus y &= \mathcal{L}^{-1}(\mathsf{CT} \oplus \mathsf{CT}^*) = \Delta Y^{(r)}[i] = a_1 \\ \text{and} \\ S^{-1}(x) \oplus S^{-1}(y) &= \Delta X^{(t)}[i] = 2^{w-j} = b_1. \end{aligned}$$

Applying DFA on LS-Designs

Differential properties of S-box

3 of 15

Proposition

Let S be an n-bit S-box. Let (a_1,b_1) and (a_2,b_2) be two differentials with $a_1\neq a_2$ such that the system of two equations

$$\mathcal{S}(x \oplus a_1) \oplus \mathcal{S}(x) = b_1 \tag{1}$$

$$\mathcal{S}(x \oplus a_2) \oplus \mathcal{S}(x) = b_2 \tag{2}$$

has at least two solutions. Then, each of the three equations (1), (2) and

$$\mathcal{S}(x \oplus a_1 \oplus a_2) \oplus \mathcal{S}(x) = b_1 \oplus b_2 \tag{3}$$

has at least four solutions.

Mathematical exploited relations

Obtaining information on the key is possible from each ω -bit word $1 \le i \le c$:

$$\begin{aligned} x &= \mathcal{L}^{-1}(\mathsf{CT} \oplus C^{(r)} \oplus K)[i] \text{ and } y = \mathcal{L}^{-1}(\mathsf{CT}^* \oplus C^{(r)} \oplus K)[i] \\ & \text{satisfy} \\ x \oplus y = \mathcal{L}^{-1}(\mathsf{CT} \oplus \mathsf{CT}^*) = \Delta Y^{(r)}[i] = a_1 \\ & \text{and} \\ \mathcal{S}^{-1}(x) \oplus \mathcal{S}^{-1}(y) = \Delta X^{(r)}[i] = 2^{\omega - j} = b_1. \end{aligned}$$

Benjamin Lac CEA-Tech/DPACA/LSAS

Applying DFA on LS-Designs

Ideal fault model 4 of 15

Ideal fault model

- Find $b_1 = \Delta X_1^{(r)} = 2^{\omega - i_1}$ and $b_2 = \Delta X_2^{(r)} = 2^{\omega - i_2}$ with $1 \le i_1 < i_2 \le \omega$ such that (a_1, b_1) and (a_2, b_2) are simultaneously satisfied for a single element for all a_1 and a_2 .

Flip the row i_1 then the row i_2 of the state before the last substitution layer with two successive fault injections in order to retrieve the complete secret key.

Exploitable differential pair

Applying DFA on LS-Designs

Ideal fault model 4 of 15

Ideal fault model

- Find $b_1 = \Delta X_1^{(r)} = 2^{\omega - i_1}$ and $b_2 = \Delta X_2^{(r)} = 2^{\omega - i_2}$ with $1 \le i_1 < i_2 \le \omega$ such that (a_1, b_1) and (a_2, b_2) are simultaneously satisfied for a single element for all a_1 and a_2 .

- Flip the row i_1 then the row i_2 of the state before the last substitution layer with two successive fault injections in order to retrieve the complete secret key.

Exploitable differential pairs

Applying DFA on LS-Designs

Ideal fault model 4 of 15

Ideal fault model

- Find $b_1 = \Delta X_1^{(r)} = 2^{\omega - i_1}$ and $b_2 = \Delta X_2^{(r)} = 2^{\omega - i_2}$ with $1 \le i_1 < i_2 \le \omega$ such that (a_1, b_1) and (a_2, b_2) are simultaneously satisfied for a single element for all a_1 and a_2 .

- Flip the row i_1 then the row i_2 of the state before the last substitution layer with two successive fault injections in order to retrieve the complete secret key.

Exploitable differential pairs

Cipher	Pair					
PRIDE	$(a_1,0x1), (a_2,0x8)$					
Robin	(<i>a</i> ₁ ,0x01), (<i>a</i> ₂ ,0x40)					
Fantomas	(<i>a</i> ₁ ,0×01), (<i>a</i> ₂ ,0×80)					
Scream	$(a_1,0x01), (a_2,0x02)$					
iScream	(<i>a</i> ₁ ,0x02), (<i>a</i> ₂ ,0x80)					

Applying DFA on LS-Designs

Random fault model 5 of 15

Random fault model

- Target the same
$$b_1 = \Delta X_1^{(r)} = 2^{\omega - i_1}$$
 and $b_2 = \Delta X_2^{(r)} = 2^{\omega - i_2}$.

Let A_1 (resp. A_2) be the average number of remaining candidates for a ω -bit key word obtained from a fault on row i_1 (resp. i_2).

Let m_1 (resp. m_2) denote the number of obtained faults on row i_1 (resp. i_2). Then, the number N of remaining candidates for the key is:

$$\left(\frac{2^{\omega}}{2^{m_1+m_2}} + \sum_{i=1}^{m_1} \frac{A_1}{2^{i+m_2}} + \sum_{i=1}^{m_2} \frac{A_2}{2^{i+m_1}} + \left(\sum_{i=1}^{m_1} \frac{1}{2^i}\right) \left(\sum_{i=1}^{m_2} \frac{1}{2^i}\right)\right)^c + 0 + 0 + 0$$

Indeed, from m faults, an attacker obtains no difference on a ω -bit word with probability $1/2^m$, she obtains at least one difference with probability $\sum_{i=1}^m 1/2^i = (2^m - 1)/2^m$. We then deduce that N is equal to:

$$\left(\frac{2^{\omega}+A_1(2^{m_1}-1)+A_2(2^{m_2}-1)+(2^{m_1}-1)(2^{m_2}-1)}{2^{m_1+m_2}}\right)$$

Applying DFA on LS-Designs

Random fault model 5 of 15

Random fault model

- Target the same $b_1 = \Delta X_1^{(r)} = 2^{\omega - i_1}$ and $b_2 = \Delta X_2^{(r)} = 2^{\omega - i_2}$.

- Let A_1 (resp. A_2) be the average number of remaining candidates for a ω -bit key word obtained from a fault on row i_1 (resp. i_2).

Let m_1 (resp. m_2) denote the number of obtained faults on row i_1 (resp. i_2). Then, the number N of remaining candidates for the key is:

$$\frac{2^{\omega}}{2^{m_1+m_2}} + \sum_{i=1}^{m_1} \frac{A_1}{2^{i+m_2}} + \sum_{i=1}^{m_2} \frac{A_2}{2^{i+m_1}} + \left(\sum_{i=1}^{m_1} \frac{1}{2^i}\right) \left(\sum_{i=1}^{m_2} \frac{1}{2^i}\right) \begin{pmatrix} c \\ c \\ i = 0 \end{pmatrix} \begin{pmatrix} c \\$$

Indeed, from m faults, an attacker obtains no difference on a ω -bit word with probability $1/2^m$, she obtains at least one difference with probability $\sum_{i=1}^m 1/2^i = (2^m - 1)/2^m$. We then deduce that N is equal to:

$$\left(\frac{2^{\omega}+A_1(2^{m_1}-1)+A_2(2^{m_2}-1)+(2^{m_1}-1)(2^{m_2}-1)}{2^{m_1+m_2}}\right)$$

Applying DFA on LS-Designs

Random fault model 5 of 15

Random fault model

- Target the same $b_1 = \Delta X_1^{(r)} = 2^{\omega - i_1}$ and $b_2 = \Delta X_2^{(r)} = 2^{\omega - i_2}$.

- Let A_1 (resp. A_2) be the average number of remaining candidates for a ω -bit key word obtained from a fault on row i_1 (resp. i_2).

- Let m_1 (resp. m_2) denote the number of obtained faults on row i_1 (resp. i_2).

hen, the number N of remaining candidates for the key is:

$$\frac{2^{\omega}}{2^{m_1+m_2}} + \sum_{j=1}^{m_1} \frac{A_1}{2^{j+m_2}} + \sum_{i=1}^{m_2} \frac{A_2}{2^{j+m_1}} + \left(\sum_{i=1}^{m_1} \frac{1}{2^i}\right) \left(\sum_{j=1}^{m_2} \frac{1}{2^j}\right) \right)^c$$

Indeed, from m faults, an attacker obtains no difference on a ω -bit word with probability $1/2^m$, she obtains at least one difference with probability $\sum_{i=1}^m 1/2^i = (2^m - 1)/2^m$. We then deduce that N is equal to:

$$\left(\frac{2^{\omega} + A_1(2^{m_1} - 1) + A_2(2^{m_2} - 1) + (2^{m_1} - 1)(2^{m_2} - 1)}{2^{m_1 + m_2}}\right)$$

Applying DFA on LS-Designs

Random fault model 5 of 15

Random fault model

- Target the same $b_1 = \Delta X_1^{(r)} = 2^{\omega - i_1}$ and $b_2 = \Delta X_2^{(r)} = 2^{\omega - i_2}$.

- Let A_1 (resp. A_2) be the average number of remaining candidates for a ω -bit key word obtained from a fault on row i_1 (resp. i_2).

Let m_1 (resp. m_2) denote the number of obtained faults on row i_1 (resp. i_2). Then, the number N of remaining candidates for the key is:

$$\left(\frac{2^{\omega}}{2^{m_1+m_2}} + \sum_{i=1}^{m_1} \frac{A_1}{2^{i+m_2}} + \sum_{i=1}^{m_2} \frac{A_2}{2^{i+m_1}} + \left(\sum_{i=1}^{m_1} \frac{1}{2^i}\right) \left(\sum_{i=1}^{m_2} \frac{1}{2^i}\right)\right)^{\alpha}$$

Indeed, from m faults, an attacker obtains no difference on a ω -bit word with probability $1/2^m$, she obtains at least one difference with probability $\sum_{i=1}^m 1/2^i = (2^m - 1)/2^m$. We then deduce that N is equal to:

$$\left(\frac{2^{\omega} + A_1(2^{m_1} - 1) + A_2(2^{m_2} - 1) + (2^{m_1} - 1)(2^{m_2} - 1)}{2^{m_1 + m_2}}\right)$$

Applying DFA on LS-Designs

Random fault model 5 of 15

Random fault model

- Target the same $b_1 = \Delta X_1^{(r)} = 2^{\omega - i_1}$ and $b_2 = \Delta X_2^{(r)} = 2^{\omega - i_2}$.

- Let A_1 (resp. A_2) be the average number of remaining candidates for a ω -bit key word obtained from a fault on row i_1 (resp. i_2).

Let m_1 (resp. m_2) denote the number of obtained faults on row i_1 (resp. i_2). Then, the number N of remaining candidates for the key is:

$$\left(\frac{2^{\omega}}{2^{m_1+m_2}} + \sum_{i=1}^{m_1} \frac{A_1}{2^{i+m_2}} + \sum_{i=1}^{m_2} \frac{A_2}{2^{i+m_1}} + \left(\sum_{i=1}^{m_1} \frac{1}{2^i}\right) \left(\sum_{i=1}^{m_2} \frac{1}{2^i}\right)\right)^c$$

Indeed, from m faults, an attacker obtains no difference on a ω -bit word with probability $1/2^m$, she obtains at least one difference with probability $\sum_{i=1}^m 1/2^i = (2^m - 1)/2^m$. We then deduce that N is equal to:

 $\frac{2^{\omega} + A_1(2^{m_1} - 1) + A_2(2^{m_2} - 1) + (2^{m_1} - 1)(2^{m_2} - 1)}{2^{m_1 + m_2}} \Big)^{c}$

Applying DFA on LS-Designs

Random fault model 5 of 15

Random fault model

- Target the same $b_1 = \Delta X_1^{(r)} = 2^{\omega - i_1}$ and $b_2 = \Delta X_2^{(r)} = 2^{\omega - i_2}$.

- Let A_1 (resp. A_2) be the average number of remaining candidates for a ω -bit key word obtained from a fault on row i_1 (resp. i_2).

- Let m_1 (resp. m_2) denote the number of obtained faults on row i_1 (resp. i_2). Then, the number N of remaining candidates for the key is:

$$\left(\frac{2^{\omega}}{2^{m_1+m_2}} + \sum_{i=1}^{m_1} \frac{A_1}{2^{i+m_2}} + \sum_{i=1}^{m_2} \frac{A_2}{2^{i+m_1}} + \left(\sum_{i=1}^{m_1} \frac{1}{2^i}\right) \left(\sum_{i=1}^{m_2} \frac{1}{2^i}\right)\right)^c$$

Indeed, from m faults, an attacker obtains no difference on a ω -bit word with probability $1/2^m$, she obtains at least one difference with probability $\sum_{i=1}^m 1/2^i = (2^m - 1)/2^m$. We then deduce that N is equal to:

$$\left(\frac{2^{\omega} + A_1(2^{m_1} - 1) + A_2(2^{m_2} - 1) + (2^{m_1} - 1)(2^{m_2} - 1)}{2^{m_1 + m_2}}\right)^{\alpha}$$

Applying DFA on LS-Designs

Properties that make the attack effective

6 of 15

The design of the linear layer

- Flip a *c*-bit row of the state before the substitution layer activates all S-boxes at its input.

Use this property on the last substitution layer allows the attacker to recover information on all ω -bit words of K.

The number of remaining candidates is at most δ^c , where δ is the differential-uniformity of the S-box.

The differential properties of the S-box The number of inputs which satisfy two valid differentials simultaneously is usually reduced to a single element.

Applying DFA on LS-Designs

Properties that make the attack effective

6 of 15

The design of the linear layer

- Flip a *c*-bit row of the state before the substitution layer activates all S-boxes at its input.

– Use this property on the last substitution layer allows the attacker to recover information on all ω -bit words of K.

The number of remaining candidates is at most δ^c , where δ is the differential-uniformity of the S-box.

The differential properties of the S-box The number of inputs which satisfy two valid differentials simultaneously is usually reduced to a single element.

Applying DFA on LS-Designs

Properties that make the attack effective

6 of 15

The design of the linear layer

- Flip a *c*-bit row of the state before the substitution layer activates all S-boxes at its input.

– Use this property on the last substitution layer allows the attacker to recover information on all ω -bit words of K.

- The number of remaining candidates is at most δ^c , where δ is the differential-uniformity of the S-box.

The differential properties of the S-box

The number of inputs which satisfy two valid differentials simultaneously is usually reduced to a single element.

Applying DFA on LS-Designs

Properties that make the attack effective

6 of 15

The design of the linear layer

- Flip a *c*-bit row of the state before the substitution layer activates all S-boxes at its input.

– Use this property on the last substitution layer allows the attacker to recover information on all ω -bit words of K.

- The number of remaining candidates is at most δ^c , where δ is the differential-uniformity of the S-box.

The differential properties of the S-box

- The number of inputs which satisfy two valid differentials simultaneously is usually reduced to a single element.

Applying DFA on LS-Designs

Properties that make the attack effective

6 of 15

The design of the linear layer

- Flip a *c*-bit row of the state before the substitution layer activates all S-boxes at its input.

– Use this property on the last substitution layer allows the attacker to recover information on all ω -bit words of K.

- The number of remaining candidates is at most δ^c , where δ is the differential-uniformity of the S-box.

The differential properties of the S-box

- The number of inputs which satisfy two valid differentials simultaneously is usually reduced to a single element.

LS-Designs

2 Applying DFA on LS-Designs

- General principle
- Depending on the fault model

Practical implementation of the DFA on SCREAM

- The TAE mode SCREAM
- DFA on SCREAM
- Practical implementation

Countermeasures

- Modes of operation
- Masking
- Internal Redundancy Countermeasure

Conclusion and perspectives

Practical implementation of the DFA on SCREAM The TAE mode SCREAM

7 of 15

Benjamin Lac CEA-Tech/DPACA/LSAS

Tweakey scheduling algorithm of Scream Scream is an iterative block cipher composed of N_s steps, each of them made of N_r rounds, introduced by Grosso in 2014. It takes as inputs a 128-bit block, a 128-bit key K and a 128-bit tweak $T = t_0 || t_1$. The tweak is used as a "lightweight key schedule". The output of the step s is added by an XOR to a subkey equal to:

Benjamin Lac CEA-Tech/DPACA/LSAS

 C_1

 T_{m-2}

Benjamin Lac CEA-Tech/DPACA/LSAS

 P_0

 T_1

 T_0

Works presentation at COSADE 2017 April 14th, 2017

 P_{m-2}

 \mathcal{E}_{K}

 C_{m-2}

Lenght

10.

 T_{m-1}

Tweakey scheduling algorithm of Scream

Scream is an iterative block cipher composed of N_s steps, each of them made of N_r rounds, introduced by Grosso in 2014. It takes as inputs a 128-bit block, a 128-bit key K and a 128-bit tweak $T = t_0 || t_1$. The tweak is used as a singlet weight key schedule the step as added by an XOR to a subkey equal to

Benjamin Lac CEA-Tech/DPACA/LSAS

Works presentation at COSADE 2017 April 14th, 2017

 C_{m-}

Tweakey scheduling algorithm of Scream

Scream is an iterative block cipher composed of N_s steps, each of them made of N_r rounds, introduced by Grosso in 2014. It takes as inputs a 128-bit block, a 128-bit key K and a 128-bit tweak $T=t_0||t_1$. The tweak is used as a "lightweight key schedule". The output of the step s is added by an XOR to a subkey equal to:

$K \oplus (t_0 t_1)$	if $s = 3i$,
$K \oplus (t_0 \oplus t_1 t_0)$	if $s = 3i + 1$,
$K \oplus (t_1 t_0 \oplus t_1)$	if $s = 3i + 2$.

Benjamin Lac CEA-Tech/DPACA/LSAS

8 of 15

DFA on SCREAM

– Target the last two rows to obtain differentials (a_1 ,0x01) (resp. (a_2 ,0x02)) which allows to obtain $A_1 \approx 2.286$ (resp. $A_2 \approx 2.639$) candidates on some key bytes.

The inner state is represented as a 8 imes16 bit array.

8 of 15

DFA on SCREAM

– Target the last two rows to obtain differentials $(a_1,0x01)$ (resp. $(a_2,0x02)$) which allows to obtain $A_1 \approx 2.286$ (resp. $A_2 \approx 2.639$) candidates on some key bytes.

– The inner state is represented as a 8×16 bit array.

DFA on SCREAM

- Target the last two rows to obtain differentials $(a_1,0x01)$ (resp. $(a_2,0x02)$) which allows to obtain $A_1 \approx 2.286$ (resp. $A_2 \approx 2.639$) candidates on some key bytes.

- The inner state is represented as a 8×16 bit array.

$$\left(\frac{252.075}{2^{m_1+m_2}}+\frac{1.286}{2^{m_2}}+\frac{1.639}{2^{m_1}}+1\right)^{16}$$

DFA on SCREAM

– Target the last two rows to obtain differentials (a_1 ,0x01) (resp. (a_2 ,0x02)) which allows to obtain $A_1 \approx 2.286$ (resp. $A_2 \approx 2.639$) candidates on some key bytes.

- The inner state is represented as a 8×16 bit array.

DFA on SCREAM

- Target the last two rows to obtain differentials (a_1 ,0x01) (resp. (a_2 ,0x02)) which allows to obtain $A_1 \approx 2.286$ (resp. $A_2 \approx 2.639$) candidates on some key bytes.

- The inner state is represented as a 8×16 bit array.

DFA on SCREAM

- Target the last two rows to obtain differentials (a_1 ,0x01) (resp. (a_2 ,0x02)) which allows to obtain $A_1 \approx 2.286$ (resp. $A_2 \approx 2.639$) candidates on some key bytes.

- The inner state is represented as a 8×16 bit array.

DFA on SCREAM

- Target the last two rows to obtain differentials $(a_1,0x01)$ (resp. $(a_2,0x02)$) which allows to obtain $A_1 \approx 2.286$ (resp. $A_2 \approx 2.639$) candidates on some key bytes.

- The inner state is represented as a 8×16 bit array.

DFA on SCREAM

- Target the last two rows to obtain differentials (a_1 ,0x01) (resp. (a_2 ,0x02)) which allows to obtain $A_1 \approx 2.286$ (resp. $A_2 \approx 2.639$) candidates on some key bytes.

– The inner state is represented as a 8×16 bit array.

DFA on SCREAM

- Target the last two rows to obtain differentials (a_1 ,0x01) (resp. (a_2 ,0x02)) which allows to obtain $A_1 \approx 2.286$ (resp. $A_2 \approx 2.639$) candidates on some key bytes.

– The inner state is represented as a 8×16 bit array.

9 of 15

The faults injection device

We used electromagnetic pulses to disrupt SCREAM execution. This approach requires no decapsulation of the chip and allows to precisely target a given time.

The SCREAM implementation used We have implemented and run the 128-bit reference VHDL code of SCREAM. The FPGA die was composed of components CRYPTO, UART and FSM. The input parameters were a 88-bit nonce, 2 ass. data blocks and 3 data block

Benjamin Lac CEA-Tech/DPACA/LSAS

9 of 15

The faults injection device

We used electromagnetic pulses to disrupt SCREAM execution. This approach requires no decapsulation of the chip and allows to precisely target a given time.

- The SCREAM implementation used
 - We have implemented and run the 128-bit reference VHDL code of SCREAM.

The FPGA die was composed of components CRYPTO, UART and FSM.

The input parameters were a 88-bit nonce, 2 ass. data blocks and 3 data blocks.

Benjamin Lac CEA-Tech/DPACA/LSAS

9 of 15

The faults injection device

We used electromagnetic pulses to disrupt SCREAM execution. This approach requires no decapsulation of the chip and allows to precisely target a given time.

The SCREAM implementation used

- We have implemented and run the 128-bit reference VHDL code of SCREAM.
- The FPGA die was composed of components CRYPTO, UART and FSM.

The input parameters were a 88-bit nonce, 2 ass. data blocks and 3 data blocks.

Benjamin Lac CEA-Tech/DPACA/LSAS

9 of 15

The faults injection device

We used electromagnetic pulses to disrupt SCREAM execution. This approach requires no decapsulation of the chip and allows to precisely target a given time.

The SCREAM implementation used

- We have implemented and run the 128-bit reference VHDL code of SCREAM.
- The FPGA die was composed of components CRYPTO, UART and FSM.
- The input parameters were a 88-bit nonce, 2 ass. data blocks and 3 data blocks.

10 of 15

Electromagnetic radiations analysis of SCREAM

Cartography of the obtained faults on the full chip. The pulses were injected on 100 spatial positions distributed on a 10×10 grid.

On each, we tested 11 different temporal positions, 4 different voltages and we injected 2 pulses.

On the 8800 injections, we obtained 465 faults of which at most 88 to one spatial position.

Benjamin Lac CEA-Tech/DPACA/LSAS

Practical implementation

10 of 15

Electromagnetic radiations analysis of SCREAM

Cartography of the obtained faults on the full chip. The pulses were injected on 100 spatial positions distributed on a 10×10 grid.

On each, we tested 11 different temporal positions, 4 different voltages and we injected 2 pulses.

On the 8800 injections, we obtained 465 faults of which at most 88 to one spatial position.

Benjamin Lac CEA-Tech/DPACA/LSAS

Practical implementation

10 of 15

Electromagnetic radiations analysis of SCREAM

Cartography of the obtained faults on the full chip. The pulses were injected on 100 spatial positions distributed on a 10×10 grid.

On each, we tested 11 different temporal positions, 4 different voltages and we injected 2 pulses.

On the 8800 injections, we obtained 465 faults of which at most 88 to one spatial position.

Benjamin Lac CEA-Tech/DPACA/LSAS

Practical implementation

10 of 15

Electromagnetic radiations analysis of SCREAM

Cartography of the obtained faults on the full chip
 The pulses were injected on 100 spatial positions distributed on a 10×10 grid.

On each, we tested 11 different temporal positions 4 different voltages and we injected 2 pulses.

On the 8800 injections, we obtained 465 faults of which at most 88 to one spatial position.

Practical implementation

10 of 15

Electromagnetic radiations analysis of SCREAM

Cartography of the obtained faults on the full chip
 The pulses were injected on 100 spatial positions distributed on a 10×10 grid.

On each, we tested 11 different temporal positions,
 4 different voltages and we injected 2 pulses.

On the 8800 injections, we obtained 465 faults of which at most 88 to one spatial position.

Practical implementation

10 of 15

Electromagnetic radiations analysis of SCREAM

- Cartography of the obtained faults on the full chip
 The pulses were injected on 100 spatial positions distributed on a 10×10 grid.
 - On each, we tested 11 different temporal positions,
 4 different voltages and we injected 2 pulses.
 - On the 8800 injections, we obtained 465 faults of which at most 88 to one spatial position.

11 of 15

All obtained faults

- A total of 69250 pulses were injected on the sensitive area of the chip. We obtained 2482 faults, among which 937 were different.

For each fault, we verified if each byte could have been obtained by the same difference equal to 2^j with $0 \le j \le 7$ in input of the last substitution layer.

A total of 36 different faults complied with this property.

We eventually obtained 6144 $pprox 2^{12.58}$ candidates for $\mathcal{L}^{-1}(\mathsf{CT} \oplus K \oplus T) \oplus C^{(23)}$

Benjamin Lac CEA-Tech/DPACA/LSAS

Practical implementation

11 of 15

All obtained faults

- A total of 69250 pulses were injected on the sensitive area of the chip. We obtained 2482 faults, among which 937 were different.

– For each fault, we verified if each byte could have been obtained by the same difference equal to 2^j with $0 \le j \le 7$ in input of the last substitution layer.

A total of 36 different faults complied with this property.

We eventually obtained 6144 $pprox 2^{12.58}$ candidates for $\mathcal{L}^{-1}(\mathsf{CT} \oplus K \oplus T) \oplus C^{(23)}$

Benjamin Lac CEA-Tech/DPACA/LSAS

Practical implementation

11 of 15

All obtained faults

- A total of 69250 pulses were injected on the sensitive area of the chip. We obtained 2482 faults, among which 937 were different.

– For each fault, we verified if each byte could have been obtained by the same difference equal to 2^j with $0 \le j \le 7$ in input of the last substitution layer.

- A total of 36 different faults complied with this property.

We eventually obtained 6144 $pprox 2^{12.58}$ candidates for $\mathcal{L}^{-1}(\mathsf{CT} \oplus K \oplus T) \oplus C^{(23)}$

Benjamin Lac CEA-Tech/DPACA/LSAS

All obtained faults

- A total of 69250 pulses were injected on the sensitive area of the chip. We obtained 2482 faults, among which 937 were different.

– For each fault, we verified if each byte could have been obtained by the same difference equal to 2^j with $0 \le j \le 7$ in input of the last substitution layer.

- A total of 36 different faults complied with this property.

Gained knowledge				ΔIn		4	
			0×01	0×04	0×08	$\mathcal{L}^{-1}(CT \oplus K \oplus T)[i] \oplus C^{(23)}[i]$	
		i = 1	0xb8	Ø	0xb9	0×03	
		i = 2	0x33	Ø	0×88	0x0e	
		i = 3	0x47	0x4b	Ø	0x2e	
		i = 4	0xca	0×54	0x3a	0xef	
		i = 5	0×19	Ø	Ø	0x2b, 0x32, 0x4f, 0x56, 0x65 or 0x7c	
		i = 6	Ø	Ø	Ø	Ø	
	2	i = 7	0x2a	Ø	Ø	0xd1 or 0xfb	
	24	i = 8	0xd5	Ø	0x1a	0xcb	
	Ψ	i = 9	0xd9	Ø	Ø	0x02 or 0xdb	
	2	i = 10	0x5d	Ø	0×58	0x3f	
	4	i = 11	0xfd	Ø	0xf9	0×48	
		i = 12	0xcc	Ø	0xbc	0×59	
		i = 13	0x2a	Ø	0x1a	0×d1	
		i = 14	0×54	Ø	0xee	0xe4	
		i = 15	0x8a	Ø	0×46	0x9e	
		i = 16	0xc2	Ø	0xe9	0×97	

We eventually obtained 6144 $pprox 2^{12.58}$ candidates for $\mathcal{L}^{-1}(\mathsf{CT} \oplus K \oplus T) \oplus C^{(23)}$

All obtained faults

- A total of 69250 pulses were injected on the sensitive area of the chip. We obtained 2482 faults, among which 937 were different.

– For each fault, we verified if each byte could have been obtained by the same difference equal to 2^j with $0 \le j \le 7$ in input of the last substitution layer.

- A total of 36 different faults complied with this property.

C		ΔIn		(22)		
Gained knowled	0×01	0×04	0×08	$\mathcal{L}^{-1}(CT\oplus K\oplus T)[i]\oplus C^{(23)}[i]$		
1010/0011010110	i = 1	0xb8	Ø	0xb9	0×03	
0100101001101011	i = 2	0x33	Ø	0×88	0x0e	
11001 1010101010	i = 3	0×47	0x4b	Ø	0x2e	
10010108410102-0	i = 4	0xca	0x54	0x3a	0xef	
anna anna Anna da n	i = 5	0×19	Ø	Ø	0x2b, 0x32, 0x4f, 0x56, 0x65 or 0x7c	
	i = 6	Ø	Ø	Ø	Ø	
	i = 7	0x2a	Ø	Ø	0xd1 or 0xfb	
24	i = 8	0xd5	Ø	0x1a	0xcb	
le l	i = 9	0xd9	Ø	Ø	0x02 or 0xdb	
	i = 10	0x5d	Ø	0×58	0x3f	
	i = 11	0xfd	Ø	0xf9	0×48	
	i = 12	0xcc	Ø	0xbc	0×59	
	i = 13	0x2a	Ø	0x1a	0×d1	
	i = 14	0×54	Ø	0xee	0xe4	
	i = 15	0x8a	Ø	0×46	0x9e	
	i = 16	0xc2	Ø	0xe9	0×97	

We eventually obtained 6144 $\approx 2^{12.58}$ candidates for $\mathcal{L}^{-1}(\mathsf{CT} \oplus K \oplus T) \oplus C^{(23)}$.

Countermeasures

LS-Designs

- 2 Applying DFA on LS-Designs
 - General principle
 - Depending on the fault model

Practical implementation of the DFA on SCREAM

- The TAE mode SCREAN
- DFA on SCREAM
- Practical implementation

4 Countermeasures

- Modes of operation
- Masking
- Internal Redundancy Countermeasure

Conclusion and perspectives

In order to encrypt data, a block cipher is always used with a mode of operation. It turns out that some well-known modes - standardized and already used in practice - thwart our DFA. It is the case for the modes which use an nonce to encrypt data.

Benjamin Lac CEA-Tech/DPACA/LSAS

Countermeasures Masking 13 of 15

Description

Add a random value RV to the state SM in the middle of the encryption \mathcal{E}_K .

Then, to mount a DFA on the encryption, an attacker must obtain a correct ciphertext $\bigcirc \bigcirc C = \mathcal{E}_{K}^{(1)}(\mathcal{E}_{K}^{(0)}(P_{1}) \oplus RV_{1})$ and a faulty one $C^{*} = \mathcal{E}_{K}^{(1)}(\mathcal{E}_{K}^{(0)}(P_{2}) \oplus RV_{2})$ such that:

$$\mathcal{E}_{K}^{(0)}(P_{1}) \oplus RV_{1} = \mathcal{E}_{K}^{(0)}(P_{2}) \oplus RV_{2}.$$

From the birthday paradox, this requires $2^{n/2}$ fault injections where n is the block size.

Cost

The cost depends on the choice of the random mask generation. A simple LFSR implemented in hardware has a low cost with respect to IoT constraints.

Benjamin Lac CEA-Tech/DPACA/LSAS

Countermeasures Masking 13 of 15

Description

Add a random value RV to the state SM in the middle of the encryption \mathcal{E}_K .

Then, to mount a DFA on the encryption, an attacker must obtain a correct ciphertext $C = \mathcal{E}_{K}^{(1)}(\mathcal{E}_{K}^{(0)}(P_{1}) \oplus RV_{1})$ and a faulty one $C^{*} = \mathcal{E}_{K}^{(1)}(\mathcal{E}_{K}^{(0)}(P_{2}) \oplus RV_{2})$ such that:

$$\mathcal{E}_K^{(0)}(P_1) \oplus RV_1 = \mathcal{E}_K^{(0)}(P_2) \oplus RV_2.$$

From the birthday paradox, this requires $2^{n/2}$ fault injections where n is the block size.

Cost

The cost depends on the choice of the random mask generation. A simple LFSR implemented in hardware has a low cost with respect to IoT constraints.

Benjamin Lac CEA-Tech/DPACA/LSAS
Countermeasures Masking 13 of 15

Description

Add a random value RV to the state SM in the middle of the encryption \mathcal{E}_K .

Then, to mount a DFA on the encryption, an attacker must obtain a correct ciphertext $C = \mathcal{E}_{K}^{(1)}(\mathcal{E}_{K}^{(0)}(P_{1}) \oplus RV_{1})$ and a faulty one $C^{*} = \mathcal{E}_{K}^{(1)}(\mathcal{E}_{K}^{(0)}(P_{2}) \oplus RV_{2})$ such that: $\mathcal{E}_{K}^{(0)}(P_{1}) \oplus RV_{1} = \mathcal{E}_{K}^{(0)}(P_{2}) \oplus RV_{2}.$

From the birthday paradox, this requires $2^{n/2}$ fault injections where n is the block size.

Cost

The cost depends on the choice of the random mask generation. A simple LFSR implemented in hardware has a low cost with respect to IoT constraints.

Benjamin Lac CEA-Tech/DPACA/LSAS

Works presentation at COSADE 2017 | April 14th, 2017

Countermeasures Masking 13 of 15

Description

Add a random value RV to the state SM in the middle of the encryption \mathcal{E}_K .

Then, to mount a DFA on the encryption, an attacker must obtain a correct ciphertext $C = \mathcal{E}_{K}^{(1)}(\mathcal{E}_{K}^{(0)}(P_{1}) \oplus RV_{1})$ and a faulty one $C^{*} = \mathcal{E}_{K}^{(1)}(\mathcal{E}_{K}^{(0)}(P_{2}) \oplus RV_{2})$ such that: $\mathcal{E}_{K}^{(0)}(P_{1}) \oplus RV_{1} = \mathcal{E}_{K}^{(0)}(P_{2}) \oplus RV_{2}.$

From the birthday paradox, this requires $2^{n/2}$ fault injections where n is the block size.

Cost

The cost depends on the choice of the random mask generation. A simple LFSR implemented in hardware has a low cost with respect to IoT constraints.

Benjamin Lac CEA-Tech/DPACA/LSAS

Works presentation at COSADE 2017 April 14th, 2017

Description

Description

Description

Description

Description

Description

Description

Description

Input	RP1 P1 RP1	P1	RP _b P _b	RP _b P _b	

Description

Input	RP1 P1	RP1	P1	RPb	P _b	RP _b	P _b
RK ₁	K ₁ RK ₁	< <u>1</u>	2 8	52			
Key	÷	4					
RK _b	K _{b'} RK _{b'} F	(_{b'}					

Description

Input	RP ₁ P ₁	RP ₁	P1		RP _b	P _b	RP _b	P _b
RK ₁	K ₁ RK ₁ K		6		5			
Key				E				
RK _b /	K _{b'} RK _{b'} K	ы						
Output	RC ₁ C ₁	RC ₁	C 1	-	RC _b	C _b	RC _b	C _b

Description

Output	RC ₁ C ₁	RC1	C ₁	RC _b	C _b	RC _b	C _b
RC1	W		6	2			

Description

	RC, CC, t CT pher Text	RG RG R CT MerText	C C C C C C C C C C C C C C	Output RC ₁ C ₁ RC ₁ C ₁	$\cdots \mathbf{RC}_b \mathbf{C}_b \mathbf{RC}_b \mathbf{C}_b$	
ε. 	sher Text	sherText	c, c, c, c, c, c, c, c, c, c, c, c, c, c	RC ₁		
101010110110101010101010101010101000000	6.CT 110101101 1010 + 0.04 U	pherText	. CT : 1101011011010104041701011010100000	RC _b		
				ef. CT		

Description

Description

Description

Description

Description

Description

Description

Description

Description

IRC consists in using efficient 8-bit implementations but from 32-bit instructions systematically operating as a whole on the 4 bytes of a 32-bit word. It uses reference blocks to thwart fault attacks, especially skip instruction for which it is very effective.

Cost

IRC simply uses bitwise operators on 32-bit and use SIMD instructions - or masks depending on the targeted device - to replace nonlinear operations.

Therefore, we obtain performances close to those on an 8-bit architecture while having a structure that intrinsically protects against DFA.

Description

IRC consists in using efficient 8-bit implementations but from 32-bit instructions systematically operating as a whole on the 4 bytes of a 32-bit word. It uses reference blocks to thwart fault attacks, especially skip instruction for which it is very effective.

Cost

IRC simply uses bitwise operators on 32-bit and use SIMD instructions - or masks depending on the targeted device - to replace nonlinear operations. Therefore, we obtain performances close to those on an 8-bit architecture while having a structure that intrinsically protects against DFA.

LS-Designs

- 2 Applying DFA on LS-Designs
 - General principle
 - Depending on the fault model

Practical implementation of the DFA on SCREAM

- The TAE mode SCREAN
- DFA on SCREAM
- Practical implementation

Countermeasures

- Modes of operation
- Masking
- Internal Redundancy Countermeasure

Sonclusion and perspectives

DE LA RECHERCHE À L'INDUSTI

Conclusion and perspectives

15 of 15

Conclusion

- General method for Differential Fault Analysis on any block cipher based on LS-designs and other families of SPN with similar structures from only 2 faults in the best cases.

Successfully perform such an attack against a hardware implementation of SCREAM, using the TLS-Design Scream with a fixed tweak.

Faults were injected using EM pulses, which constitutes a low-cost means of injection

Resistance against DFA is important for an LS-Design, which will be dedicated to low-end devices thanks to its lightness.

Some countermeasures which leave the cipher still efficient for IoT devices, especially a new kind of countermeasure: the so-called Internal Redundancy Countermeasure.

Perspectives

15 of 15

Conclusion

- General method for Differential Fault Analysis on any block cipher based on LS-designs and other families of SPN with similar structures from only 2 faults in the best cases.

- Successfully perform such an attack against a hardware implementation of SCREAM, using the TLS-Design Scream with a fixed tweak.

Faults were injected using EM pulses, which constitutes a low-cost means of injection

Resistance against DFA is important for an LS-Design, which will be dedicated to low-end devices thanks to its lightness.

Some countermeasures which leave the cipher still efficient for IoT devices, especially a new kind of countermeasure: the so-called Internal Redundancy Countermeasure.

Perspectives

15 of 15

Conclusion

- General method for Differential Fault Analysis on any block cipher based on LS-designs and other families of SPN with similar structures from only 2 faults in the best cases.

- Successfully perform such an attack against a hardware implementation of SCREAM, using the TLS-Design Scream with a fixed tweak.

- Faults were injected using EM pulses, which constitutes a low-cost means of injection.

Resistance against DFA is important for an LS-Design, which will be dedicated to low-end devices thanks to its lightness.

Some countermeasures which leave the cipher still efficient for IoT devices, especially a new kind of countermeasure: the so-called Internal Redundancy Countermeasure.

Perspectives

15 of 15

Conclusion

- General method for Differential Fault Analysis on any block cipher based on LS-designs and other families of SPN with similar structures from only 2 faults in the best cases.

- Successfully perform such an attack against a hardware implementation of SCREAM, using the TLS-Design Scream with a fixed tweak.

- Faults were injected using EM pulses, which constitutes a low-cost means of injection.

 Resistance against DFA is important for an LS-Design, which will be dedicated to low-end devices thanks to its lightness.

Some countermeasures which leave the cipher still efficient for IoT devices, especially a new kind of countermeasure: the so-called Internal Redundancy Countermeasure.

Perspectives

15 of 15

Conclusion

- General method for Differential Fault Analysis on any block cipher based on LS-designs and other families of SPN with similar structures from only 2 faults in the best cases.

- Successfully perform such an attack against a hardware implementation of SCREAM, using the TLS-Design Scream with a fixed tweak.

- Faults were injected using EM pulses, which constitutes a low-cost means of injection.

 Resistance against DFA is important for an LS-Design, which will be dedicated to low-end devices thanks to its lightness.

- Some countermeasures which leave the cipher still efficient for IoT devices, especially a new kind of countermeasure: the so-called Internal Redundancy Countermeasure.

Perspectives

Apply IRC on other block ciphers and also propose a generic method to deploy it on stream ciphers: will be studied in future work.

Benjamin Lac CEA-Tech/DPACA/LSAS

15 of 15

Conclusion

- General method for Differential Fault Analysis on any block cipher based on LS-designs and other families of SPN with similar structures from only 2 faults in the best cases.

- Successfully perform such an attack against a hardware implementation of SCREAM, using the TLS-Design Scream with a fixed tweak.

- Faults were injected using EM pulses, which constitutes a low-cost means of injection.

 Resistance against DFA is important for an LS-Design, which will be dedicated to low-end devices thanks to its lightness.

- Some countermeasures which leave the cipher still efficient for IoT devices, especially a new kind of countermeasure: the so-called Internal Redundancy Countermeasure.

Perspectives

DGA

DE LA RECHERCHE À L'INDUSTRIE

Cea

THANKS FOR YOUR ATTENTION

Commissariat à l'énergie atomique et aux énergies alternatives Benjamin Lac CEA-Tech/DPACA/LSAS

Public Industrial and Commercial Establishment RCS Paris B 775 685 019