

Multiple-Valued Debiasing for Phisically Unclonable Functions and Its Application to Fuzzy Extractors

Manami Suzuki, Rei Ueno, Naofumi Homma, and Takafumi Aoki

Tohoku University, Japan

Background

Preliminary and related works

Proposed Multiple-valued debiasing

- Performance evaluation
- Concluding remarks

High demand for secure LSI authentication

- Physically unclonable function (PUF) is expected to prevent counterfeiting LSIs
 - Major features for authentication: Stability and Uniformity

What if PUF response is unstable and biased?

Unstable and biased PUF response

PUF-based key generation with Fuzzy extractor (FE)

Problems on unstable and biased PUF response
 Helper data leaks information about seed (entropy loss)
 Difficult to extract entropy from unstable response

Unstable and biased PUF response

PUF-based key generation with Fuzzy extractor (FE)

Problems on unstable and biased PUF response
 Helper data leaks information about seed (entropy loss)
 Difficult to extract entropy from unstable response

Unstable and biased PUF response

PUF-based key generation with Fuzzy extractor (FE)

Problems on unstable and biased PUF response
 Helper data leaks information about seed (entropy loss)
 Difficult to extract entropy from unstable response

Extraction of PUF response

- Conventional methods for extracting stable and uniform response from unstable and biased PUFs
 - Multiple-valued response
 - Consider random (unstable) cell as stable cell to output third value
 - Higher entropy than binary
 - Debiasing

- Challenge Response $x \rightarrow PUF \rightarrow R$ R = 01?011??1??0?: Random cell
- Debiased response would have full-entropy
- Applied to PUF response prior to FE
- Multiple-valued response cannot work with FE 🙁
 - Conventional FEs can accept only binary inputs
 - Limitation of application scenarios

Efficient extraction of stable and uniform response from unstable and biased PUFs

- Key trick
 - Multiple-valued debiasing
 - Input: multiple-valued response
 - -Output: binary response that can be applied to FE

Results

- Proposed method can extract 36% longer full-entropy response than conventional one
- Application to authentication with FE
 - 100% successful authentication even in some cases where conventional method fails

Outline

Background

Preliminary and related works Unstable/Biased PUF and conventional debiasing Proposed multiple-valued debiasing

- Performance evaluation
- Concluding remarks

n-bit PUF consists of *n* cells

- Each cell outputs one-bit response at a measurement
- Two types of cells if same challenge is repeated
 Constant cell: always 0 or always 1
 Random cell: 0 or 1 at random
- Random cell is not preferable, because...
 - Cannot be used as response
 - reduce the stability of PUF response

n-bit PUF consists of *n* cells

- Each cell outputs one-bit response at a measurement
- Two types of cells if same challenge is repeated
 Constant cell: always 0 or always 1
 Random cell: 0 or 1 at random
- Random cell is not preferable, because...
 - Cannot be used as response
 - reduce the stability of PUF response

n-bit PUF consists of *n* cells

- Each cell outputs one-bit response at a measurement
- Two types of cells if same challenge is repeated
 Constant cell: always 0 or always 1
 Random cell: 0 or 1 at random
- Random cell is not preferable, because...
 - Cannot be used as response
 - reduce the stability of PUF response

Use of random cell: multiple-valued response

Detect random cell and consider it as third value

Binary response (Contain 10% erroneous cells) Multiple-valued response (No longer erroneous)

How to assign "third value" to random cells

Type of ce		Assigned value
Constant	0	00
Constant	1	11
Random		10

Ternary assignment by two bits [CHES11]

Ternary response cannot work with conventional FEs

Biased PUF

Bias has influence on secure key generation

- □ *p*-biased PUF:
 - $|Pr(X_i = 0) 0.5| = p$
- If bias is high, then entropy decreases
- Typical FEs require p < 0.082
- Debiasing
 - Extract low-biased response from high-biased one
 - Debiased response is shorter than original

Biased PUF

Bias has influence on secure key generation

- □ *p*-biased PUF:
 - $|Pr(X_i = 0) 0.5| = p$
- If bias is high, then entropy decreases
- □ Typical FEs require p < 0.082</p>
- Debiasing
 - Extract low-biased response from high-biased one
 - Debiased response is shorter than original

Conventional debiasing method

- Classic deterministic randomness extractor (CDRE) proposed by von Neumann
 Handle input bit string with a pair of two consecutive bits
 (1, 0) and (0, 1) are assigned to 1 and 0, respectively
 (0, 0) and (1, 1) are discarded
- Debiasing based on CDRE [CHES15]

Enrollment

Debiasing based on CDRE

Enrollment

 \square Generate debiased response Y and debiasing data D

Reconstruction

Reconstructs noisy debiased response Y' based on D

Enrollment			Reconstruction			
input	output		input		output	n n : Occurrence probability
$x_{2i} x_{2i+1}$	y _i	d_i	$x'_{2i}x'_{2i+1}$	d_i	y'_i	of 0 and 1 in X
0 0	discard	0	0 -	1	0	
0 1	0	1	1 -	1	1	Zeros and ones appear in Y
1 0	1	1		0	discard	with same probability $p_0 p_1$
1 1	discard	0				

 x_i : *i*th bit of X y_i : *i*th bit of Y d_i : *i*th bit of D -: Don't care

Background

Preliminary and related works

Proposed multiple-valued debiasing

Performance evaluations

Concluding remarks

Proposed debiasing method

Input: ternary response Ternary digit string with 0, 1, and r (random value) Output: debiased binary response

Conventional FEs can be used together with proposed debiasing method

Proposed debiasing method

Handle input with a pair of consecutive digits Perform error correction in reconstruction

Enrollment				Recor	nstru	ction	Both Oo and to appear by	
input	outpu	ut		input		output	Both US and TS appear by	
$t_{2i} t_{2i+1}$	\mathcal{Y}_i	d_i		$t'_{2i}t'_{2i+1}$	d_i	y'_i	probability $p_0 p_1 + p_0 p_r + p_1 p_r$	
0 0	discard	0		0 -	1	0	in resulting response	
1 1	discard	0		1 -	1	1		
rr	discard	0		r r	1	1	$ p_{0,}p_{1}, p_{r}:$	
0 1	0	1		<i>r</i> 0	1	1	Occurrence probability of	
r 1	0	1		r 1	1	0	constant cell (0 or 1) and	
0 r	0	1			0	discard	random cell (r) in X	
10	1	1						
r 0	1	1	t_i :	t_i : <i>i</i> th bit of <i>T</i> , y_i : <i>i</i> th bit of <i>Y</i>				
1 <i>r</i>	1	1	d_i	: <i>i</i> th bit o	f <i>D</i> ,	- : Don't	care	

Error patterns of response bits in reconstruction

Binary response

Error patterns of response bits in reconstruction

Binary response

Error patterns of response bits in reconstruction

Binary response

Proposed method is considered as error correction using a code $\{(0, 1), (1, 0)\}$ with erasure symbol r

Expected entropy after debiasing

$$E_{Conv} = np_0p_1(1-p_r)$$
$$E_{Proposal} = n (p_0p_1+p_0p_r+p_1p_r)$$

Random cells contribute to entropy in proposed method

Background

Related works

Proposed multiple-valued debiasing

Performance evaluations

Concluding remarks

Experimental simulation

- Evaluate resulting bias and response length
- Generate ternary responses by simulation
 Length of ternary response: 1,024
 - With different bias and number of random cells
 - Bias range from 0 to 0.5
 - Number of random cells from 50 to 500
 - Number of responses for each parameter: 1,000

Average bias of resulting response

Number of random cells

Condition for secure key generation with a typical FE: $|p'_0 - 0.5| < 0.082$

Both responses on average satisfied the condition

Worst-case bias of resulting response

Number of random cells

Responses extracted by proposed method satisfied the condition even in worst-case

Use of ternary response increases entropy of response

Resulting bit length for different biases

High-bias results in short response in both methods

Proposed method obtained 22% longer bit length than conventional method

Use of ternary response can extract high entropy

Resulting bit length for different # of random cells

- Proposed method extracted longest bit length when the number of random cells was 300-400
 - Entropy of ternary response is largest when number of random cells is one-third of all cells

Experiment with FPGA implementation

Implement Latch-PUF on FPGA
 Using 3 FPGAs (Xilinx Spartan 6)
 Implemented at 10 different locations
 Response bit length: 1,024

Number of challenges to detect random cells: 256

30 L-PUFs

Biases of resulting responses

Both methods reduced biases significantly
 Percentage of random cells was ~10% in the experiment

Resulting bit length for original biases

- High bias decreases resulting bit lengths for both methods as the same as in simulation
- Proposed method could extract larger bit length

FE using proposed debiasing method

FE using proposed debiasing method

Evaluation of FEs with simulated PUF responses
 Comparison of authentication failure rate and efficiency

Efficiency = debiased bit length / original PUF response length

Simulated response based on L-PUF implemented on FPGA

ECC in FE: connected code

□ (24,12) Golay code and (8,1) repetition code

Comparison of debiasing results by FEs

Dies	Random	Conventior	nal method	Proposed method	
Bias	cell	P _{fail}	Efficiency	$P_{\rm fail}$	Efficiency
0.1	0.1	0	0.236	0	0.286
	0.2	0	0.237	0	0.312
	0.3	0.013	0.243	0	0.328
0.3	0.1	0	0.172	0	0.220
	0.2	0.002	0.184	0	0.264
	0.3	0.240	0.195	0	0.287

10,000 challenges

- $P_{\text{fail}} = 0$ under experimental conditions
 - Thanks to high stability of multiple-valued response
 - Proposed method does not require strong ECC in FE

Comparison of debiasing results by FEs

Dies	Random	Conventior	nal method	Proposed method		
Blas	cell	$P_{\rm fail}$	Efficiency	$P_{\rm fail}$	Efficiency	
0.1	0.1	0	0.236	0	0.286	
	0.2	0	0.237	0	0.312	
	0.3	0.013	0.243	0	0.328	
0.3	0.1	0	0.172	0	0.220	
	0.2	0.002	0.184	0	0.264	
	0.3	0.240	0.195	0	0.287	

10,000 challenges

- $\square P_{\text{fail}} = 0$ under experimental conditions
 - Thanks to high stability of multiple-valued response
 - Proposed method does not require strong ECC in FE
- Our method achieved 21-47% higher efficiency
 - Efficiency is high when more random cells appear

Multiple-valued response extraction can be used with key generation based on FE

Improved stability and longer full-entropy response

- Even in worst-case bias, our method satisfied the condition to generate secret information securely
- 36% longer full-entropy than conventional binary debiasing in an experiment
- Future works
 - ECC design taking advantage of proposed method
 - Further evaluation using other types of PUFs