NANYANG
23 TECHNOLOGICAL

N/z)9 UNIVERSITY
@ SINGAPORE

Number "Not Used” Once -
Practical fault attack on pgm4
implementations of NIST
candidates

Prasanna Ravi, Debapriya

Basu Roy, Shivam Bhasin,

Anupam Chattopadhyay,
Debdeep Mukhopadhyay

COSADE-2019 ;
5th April 2019 ,r_:.":,i!
prag

sspPace

Table of Contents

© Context

© Lattice based Crypto: Background
© Fault Vulnerability

@ Key Recovery Attacks

© Message Recovery Attacks

@ Experimental Validation

@ Countermeasures

@ Conclusion

NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

sspPace

Table of Contents

© Context

% NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

sspPace

Context

e Huge money in quantum computing is being invested by
computer industry giants like Google, IBM, Intel and other
companies like D-Wave, lonQ.

NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

sspPace

Context

e Huge money in quantum computing is being invested by
computer industry giants like Google, IBM, Intel and other
companies like D-Wave, lonQ.

e The most powerful universal gate quantum computer: 160
physical gbits from lonQ.

NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

sspPace

Context

e Huge money in quantum computing is being invested by
computer industry giants like Google, IBM, Intel and other
companies like D-Wave, lonQ.

e The most powerful universal gate quantum computer: 160
physical gbits from lonQ.

e Bristlecone, Google's quantum processor currently works with
72 physical qubits.

NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

sspPace

Context

e Huge money in quantum computing is being invested by
computer industry giants like Google, IBM, Intel and other
companies like D-Wave, lonQ.

e The most powerful universal gate quantum computer: 160
physical gbits from lonQ.

e Bristlecone, Google's quantum processor currently works with
72 physical qubits.

e How many qubits do we need to break RSA-204877

w5

% NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

sspPace

Context

e Huge money in quantum computing is being invested by
computer industry giants like Google, IBM, Intel and other
companies like D-Wave, lonQ.

e The most powerful universal gate quantum computer: 160
physical gbits from lonQ.

e Bristlecone, Google's quantum processor currently works with
72 physical qubits.

e How many qubits do we need to break RSA-204877 4096
logical qubits

NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

sspPace

Context

e Huge money in quantum computing is being invested by
computer industry giants like Google, IBM, Intel and other
companies like D-Wave, lonQ.

e The most powerful universal gate quantum computer: 160
physical gbits from lonQ.

e Bristlecone, Google's quantum processor currently works with
72 physical qubits.

e How many qubits do we need to break RSA-204877 4096
logical qubits <— Millions of physical qubits

NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

sspPace

Context

e Huge money in quantum computing is being invested by
computer industry giants like Google, IBM, Intel and other
companies like D-Wave, lonQ.

e The most powerful universal gate quantum computer: 160
physical gbits from lonQ.

e Bristlecone, Google's quantum processor currently works with
72 physical qubits.

e How many qubits do we need to break RSA-204877 4096
logical qubits <— Millions of physical qubits

NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

sspPace

Context

e Huge money in quantum computing is being invested by
computer industry giants like Google, IBM, Intel and other
companies like D-Wave, lonQ.

e The most powerful universal gate quantum computer: 160
physical gbits from lonQ.

e Bristlecone, Google's quantum processor currently works with
72 physical qubits.

e How many qubits do we need to break RSA-204877 4096
logical qubits <— Millions of physical qubits

e NIST process for standardization of Post-Quantum
Cryptography (PQC) is underway.

NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

sspPace

Context

e Huge money in quantum computing is being invested by
computer industry giants like Google, IBM, Intel and other
companies like D-Wave, lonQ.

e The most powerful universal gate quantum computer: 160
physical gbits from lonQ.

e Bristlecone, Google's quantum processor currently works with
72 physical qubits.

e How many qubits do we need to break RSA-204877 4096
logical qubits <— Millions of physical qubits

e NIST process for standardization of Post-Quantum
Cryptography (PQC) is underway.

e Started in December 2017, 3-5 years analysis period, followed
by 2 years for draft standards.

w5

% NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

sspPace

NIST PQC Call

Signatures

Encryption

Key-establishments (KEMs)
Selection Criteria:

o Security

e Performance

e Backward compatibility
o Perfect forward secrecy
[]

NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

sspPace

NIST PQC Call

Signatures

Encryption

Key-establishments (KEMs)
Selection Criteria:

Security

Performance

Backward compatibility
Perfect forward secrecy

[]
[]
[]
[]
e Resistance to implementation attacks
[]

% NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

sspPace

NIST PQC Call
Type Signatures KEM/Encryption Overall

Lattice-based 5 23 28
Code-based 3 17 20
Multivariate 8 2 10
Hash-based 3 0 3
Isogeny-based 0 1 1
Others 2 5 7

Total 21 48 69

NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

sspPace

NIST PQC Call
Type Signatures KEM/Encryption Overall

Lattice-based 3 9 12
Code-based 0 7 7
Multivariate 4 0 4
Hash-based 2 - 2
Isogeny-based 0 1 1
Others 0 0 0

Total 9 17 26

NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

sspPace

This Work

o Fault Attack on 4 Lattice-based schemes: NewHope, Frodo,
Kyber, Dilithium

e Fault Vulnerability: Usage of nonces in the sampling
operation.

e Fault Model: Instruction Skips on the ARM Cortex-M4.
e Number of faults: 1-5.

e Nonce-reuse attacks are not new... Well known in the context
of ECC.

w5

% NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

sspPace

This Work

o Fault Attack on 4 Lattice-based schemes: NewHope, Frodo,
Kyber, Dilithium

e Fault Vulnerability: Usage of nonces in the sampling
operation.

e Fault Model: Instruction Skips on the ARM Cortex-M4.
e Number of faults: 1-5.

e Nonce-reuse attacks are not new... Well known in the context
of ECC.

e Impact:

w5

% NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

sspPace

This Work

o Fault Attack on 4 Lattice-based schemes: NewHope, Frodo,
Kyber, Dilithium

e Fault Vulnerability: Usage of nonces in the sampling
operation.

e Fault Model: Instruction Skips on the ARM Cortex-M4.

e Number of faults: 1-5.

e Nonce-reuse attacks are not new... Well known in the context
of ECC.
e Impact:
o Key Recovery Attack

w5

% NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

sspPace

This Work

o Fault Attack on 4 Lattice-based schemes: NewHope, Frodo,
Kyber, Dilithium

e Fault Vulnerability: Usage of nonces in the sampling
operation.

e Fault Model: Instruction Skips on the ARM Cortex-M4.

e Number of faults: 1-5.

e Nonce-reuse attacks are not new... Well known in the context
of ECC.

e Impact:

o Key Recovery Attack
o Message Recovery Attack in CCA-secure KEM schemes in
Man In The Middle (MITM) setting

w5

% NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

sspPace

Table of Contents

© Lattice based Crypto: Background

% NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

sspPace

Learning With Errors (LWE) problem

% NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

sspPace

Learning With Errors (LWE) problem

o Let A€ Zy*" and S,E € Zj <~ D,

% NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

sspPace

Learning With Errors (LWE) problem

o Let A€ Zy*" and S,E € Zj <~ D,
e T=(AxS+E)eZy

% NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

sspPace

Learning With Errors (LWE) problem

o Let A€ Zy*" and S,E € Zj <~ D,
e T=(AxS+E)eZ!
e Search LWE: Given several pairs (A, T), find S.

% NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

s pacs
Learning With Errors (LWE) problem

o Let AcZ and S,E € Z! « D,
e T=(AxS+E)eZ!
e Search LWE: Given several pairs (A, T), find S.

e Decisional LWE: Distinguish between valid LWE pairs (A, T)
from uniformly random samples in (Z;*" x Zg).

NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

sspPace

Learning With Errors (LWE) problem

o Let AcZ and S,E € Z! « D,
T=(AxS+E)ezp
Search LWE: Given several pairs (A, T), find S.

Decisional LWE: Distinguish between valid LWE pairs (A, T)
from uniformly random samples in (Z;*" x Zg).

Computations over matrices and Vectors were mapped to
polynomials in the more efficient variants of LWE such as
Ring-LWE (RLWE) and Module-LWE (MLWE).

% NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

sspPace

Learning With Errors (LWE) problem

o Let AcZ and S,E € Z! « D,
e T=(AxS+E)eZ!
e Search LWE: Given several pairs (A, T), find S.

e Decisional LWE: Distinguish between valid LWE pairs (A, T)
from uniformly random samples in (Z;*" x Zg).

e Computations over matrices and Vectors were mapped to
polynomials in the more efficient variants of LWE such as
Ring-LWE (RLWE) and Module-LWE (MLWE).

e Ring LWE: R, = Z4[X]/(X" + 1) with A, S, E € R,

% NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

sspPace

Learning With Errors (LWE) problem

o Let AcZ and S,E € Z! « D,
e T=(AxS+E)eZ!
e Search LWE: Given several pairs (A, T), find S.

e Decisional LWE: Distinguish between valid LWE pairs (A, T)
from uniformly random samples in (Z;*" x Zg).

e Computations over matrices and Vectors were mapped to
polynomials in the more efficient variants of LWE such as
Ring-LWE (RLWE) and Module-LWE (MLWE).

e Ring LWE: R, = Z4[X]/(X" + 1) with A, S, E € R,
e Module LWE: RFX! = (Z,[X]/(X" + 1))*! with A € RE*,
S e R}, EcR.

% NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

fis PaCE

Learning With Errors (LWE) problem

o Let AcZ and S,E € Z! « D,
e T=(AxS+E)eZ!
e Search LWE: Given several pairs (A, T), find S.

e Decisional LWE: Distinguish between valid LWE pairs (A, T)
from uniformly random samples in (Z;*" x Zg).

e Computations over matrices and Vectors were mapped to
polynomials in the more efficient variants of LWE such as
Ring-LWE (RLWE) and Module-LWE (MLWE).

e Ring LWE: R, = Z4[X]/(X" + 1) with A, S, E € R,

e Module LWE: RE*! = (Z[X]/(X™ 4+ 1))**! with A € REX!,
S e R}, EcR.

e Learning With Rounding (LWR): Error deterministically
generated by rounding to a lower modulus.

% NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

sspPace

The Importance of Error

e Error component E is essential to hardness guarantees

% NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

sspPace

The Importance of Error

e Error component E is essential to hardness guarantees

e Without E, LWE instance becomes solvable modular linear
equations 7' = A % S

NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

sspPace

The Importance of Error

e Error component E is essential to hardness guarantees

e Without E, LWE instance becomes solvable modular linear
equations 7' = A % S

¢ An attack reducing (or bounding) E could potentially
compromise the security of the scheme

NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

sspPace

The Importance of Error

Error component E is essential to hardness guarantees

Without E, LWE instance becomes solvable modular linear
equations 7' = A % S

An attack reducing (or bounding) E could potentially
compromise the security of the scheme

Several insecure instantiations of LWE:

NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

sspPace

The Importance of Error

Error component E is essential to hardness guarantees

Without E, LWE instance becomes solvable modular linear
equations 7' = A % S

An attack reducing (or bounding) E could potentially
compromise the security of the scheme
Several insecure instantiations of LWE:

e Distribution always outputs zero error

NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

sspPace

The Importance of Error

Error component E is essential to hardness guarantees

Without E, LWE instance becomes solvable modular linear
equations 7' = A % S

An attack reducing (or bounding) E could potentially
compromise the security of the scheme
Several insecure instantiations of LWE:

e Distribution always outputs zero error

o Distribution always outputs an error in the interval

z+[—

3'3)

w5

% NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

sspPace

The Importance of Error

Error component E is essential to hardness guarantees

Without E, LWE instance becomes solvable modular linear
equations 7' = A % S

An attack reducing (or bounding) E could potentially
compromise the security of the scheme
Several insecure instantiations of LWE:

e Distribution always outputs zero error
o Distribution always outputs an error in the interval

1
cl-53)
e Sum of a specific set of error co-ordinates is always zero

w5

% NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

sspPace

The Importance of Error

Error component E is essential to hardness guarantees

Without E, LWE instance becomes solvable modular linear
equations 7' = A % S

An attack reducing (or bounding) E could potentially
compromise the security of the scheme
Several insecure instantiations of LWE:

e Distribution always outputs zero error
o Distribution always outputs an error in the interval

1
l-33)
e Sum of a specific set of error co-ordinates is always zero
e Secret is same as the Error

w5

% NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

sspPace

Table of Contents

© Fault Vulnerability

% NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

sspPace

Fault Vulnerability

e Certain amount of randomness required to generate S and E.

e The secret S and error E are sampled from the same
distribution and utilize the same functions for sampling.

NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

sspPace

Fault Vulnerability

e Certain amount of randomness required to generate S and E.

e The secret S and error E are sampled from the same
distribution and utilize the same functions for sampling.

e S = Sample(og), E = Sample(og)

NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

sspPace

Fault Vulnerability

e Certain amount of randomness required to generate S and E.

e The secret S and error E are sampled from the same
distribution and utilize the same functions for sampling.

e S = Sample(og), E = Sample(og)

NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

sspPace

Fault Vulnerability

Certain amount of randomness required to generate S and E.

The secret S and error E are sampled from the same
distribution and utilize the same functions for sampling.

S = Sample(og), E = Sample(og)

Ideally, for every fresh instance of Sample, one should use a
newly generated random seed.

NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

sspPace

Fault Vulnerability

Certain amount of randomness required to generate S and E.

The secret S and error E are sampled from the same
distribution and utilize the same functions for sampling.

S = Sample(og), E = Sample(og)

Ideally, for every fresh instance of Sample, one should use a
newly generated random seed.

But, we observed...

NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

sspPace

Fault Vulnerability

Certain amount of randomness required to generate S and E.

The secret S and error E are sampled from the same
distribution and utilize the same functions for sampling.

S = Sample(og), E = Sample(og)

Ideally, for every fresh instance of Sample, one should use a
newly generated random seed.

But, we observed...
e S = Sample(o, nonces), E = Sample(c, nonceg)

NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

sspPace

Fault Vulnerability

e Certain amount of randomness required to generate S and E.

e The secret S and error E are sampled from the same
distribution and utilize the same functions for sampling.

e S = Sample(og), E = Sample(og)

o ldeally, for every fresh instance of Sample, one should use a
newly generated random seed.

e But, we observed...

e S = Sample(o, nonces), E = Sample(c, nonceg)
¢ In need for efficiency, the same seed appended with one byte

of nonce is used across multiple instances of the Sample
function.

w5

% NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

fis PaCE

Fault Vulnerability

w5

Certain amount of randomness required to generate S and E.

The secret S and error E are sampled from the same
distribution and utilize the same functions for sampling.
S = Sample(og), E = Sample(og)
Ideally, for every fresh instance of Sample, one should use a
newly generated random seed.
But, we observed...
e S = Sample(o, nonces), E = Sample(c, nonceg)
In need for efficiency, the same seed appended with one byte

of nonce is used across multiple instances of the Sample
function.

If this nonce could be faulted to realize reuse, then same seed
is used to sample both S and E resulting in S = E.

@ NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

fis PaCE

Fault Vulnerability

w5

Certain amount of randomness required to generate S and E.

The secret S and error E are sampled from the same
distribution and utilize the same functions for sampling.
S = Sample(og), E = Sample(og)
Ideally, for every fresh instance of Sample, one should use a
newly generated random seed.
But, we observed...
e S = Sample(o, nonces), E = Sample(c, nonceg)
In need for efficiency, the same seed appended with one byte

of nonce is used across multiple instances of the Sample
function.

If this nonce could be faulted to realize reuse, then same seed
is used to sample both S and E resulting in S = E.

@ NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

sspPace

Fault Vulnerability

e Assume a Ring LWE instance

T=AxS+EcR,

% NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

sspPace

Fault Vulnerability

e Assume a Ring LWE instance
T=AxS+EcR,

e Inject fault such that E = S.

% NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

sspPace

Fault Vulnerability

e Assume a Ring LWE instance
T=AxS+EcR,

e Inject fault such that E = S.
e Ring-LWE instance is faulted to:

T=AxS+SeR,

% NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

sspPace

Fault Vulnerability

e Assume a Ring LWE instance
T=AxS+EcR,

e Inject fault such that E = S.
e Ring-LWE instance is faulted to:

T=AxS+SeR,

e Modular linear system of equations with n equations and n
unknowns which is trivially solvable.

NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

sspPace

Fault Vulnerability

e Assume a Ring LWE instance

T=AxS+EcR,

Inject fault such that E = S.
Ring-LWE instance is faulted to:

T=AxS+SeR,

Modular linear system of equations with n equations and n
unknowns which is trivially solvable.

Applies to all variants of LWE (General LWE, Ring-LWE,
Module-LWE)

NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

sspPace

Fault Vulnerability

e These faulty LWE instances can be used to perform key
recovery and message recovery attacks.

o Key recovery attacks are performed by faulting the key
generation procedure.

o Key recovery attacks applicable to NewHope, Frodo, Kyber
and Dilithium.

e Message recovery attacks are performed by faulting the
encapsulation procedure.

e Message recovery attacks only applicable over NewHope,
Frodo and Kyber KEM schemes.

w5

% NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

sspPace

Table of Contents

@ Key Recovery Attacks

% NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

sspPace

NewHope KEM

¢ NewHope is a suite of KEM (NewHope-CPA/CCA-KEM)

% NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

sspPace

NewHope KEM

¢ NewHope is a suite of KEM (NewHope-CPA/CCA-KEM)
e Based on RLWE problem

o NewHope-CPA KEM is derived from the NewHope-CPA
Public Key Encryption (PKE) scheme.

NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

sspPace

NewHope KEM

NewHope is a suite of KEM (NewHope-CPA/CCA-KEM)
Based on RLWE problem

NewHope-CPA KEM is derived from the NewHope-CPA
Public Key Encryption (PKE) scheme.

Further, NewHope-CCA KEM is obtained through application
of FO transformation on NewHope-CPA KEM.

NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

sspPace

NewHope KEM

NewHope is a suite of KEM (NewHope-CPA/CCA-KEM)
Based on RLWE problem

NewHope-CPA KEM is derived from the NewHope-CPA
Public Key Encryption (PKE) scheme.

Further, NewHope-CCA KEM is obtained through application
of FO transformation on NewHope-CPA KEM.

S and E are generated using a Sample operation

% NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

sspPace

NewHope KEM

¢ NewHope is a suite of KEM (NewHope-CPA/CCA-KEM)
e Based on RLWE problem

o NewHope-CPA KEM is derived from the NewHope-CPA
Public Key Encryption (PKE) scheme.

e Further, NewHope-CCA KEM is obtained through application
of FO transformation on NewHope-CPA KEM.

e S and E are generated using a Sample operation

e Sample takes input as a 32-byte seed and 1-byte of nonce

% NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

fis PaCE

NewHope KEM

¢ NewHope is a suite of KEM (NewHope-CPA/CCA-KEM)
e Based on RLWE problem

o NewHope-CPA KEM is derived from the NewHope-CPA
Public Key Encryption (PKE) scheme.

e Further, NewHope-CCA KEM is obtained through application
of FO transformation on NewHope-CPA KEM.

e S and E are generated using a Sample operation
e Sample takes input as a 32-byte seed and 1-byte of nonce

o It uses SHAKE256 (SHA-3 family) as an Extendable Output
Function (XOF) to deterministically generate more random
bits and subsequently generate S and E.

% NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

fis PaCE

NewHope KEM

¢ NewHope is a suite of KEM (NewHope-CPA/CCA-KEM)
e Based on RLWE problem

o NewHope-CPA KEM is derived from the NewHope-CPA
Public Key Encryption (PKE) scheme.

e Further, NewHope-CCA KEM is obtained through application
of FO transformation on NewHope-CPA KEM.

e S and E are generated using a Sample operation
e Sample takes input as a 32-byte seed and 1-byte of nonce

o It uses SHAKE256 (SHA-3 family) as an Extendable Output
Function (XOF) to deterministically generate more random
bits and subsequently generate S and E.

e In NIST submission, designers use nonce=(0,1).

% NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

sspPace

NEWHOPE CPA-PKE

1: procedure NEWHOPE.CPAPKE.GEN ()

a < GenA(publicseed)

S <— PolyBitRev(Sample(noiseseed,0))

§ = NTT(s)

e < PolyBitRev(Sample(noiseseed, 1))

é = NTT(e)

b=axs+é

Return
(pk = EncodePK(b, publicseed), sk = EncodePolynomial(s))
10: end procedure

e e N>T s LD

NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

sspPace

NEWHOPE CPA-PKE

1: procedure NEWHOPE.CPAPKE.GEN ()

a < GenA(publicseed)

s < PolyBitRev(Sample(noiseseed, 0— R))

§ = NTT(s)

e < PolyBitRev(Sample(noiseseed, 1— R))

é = NTT(e)

b=axs+é

Return
(pk = EncodePK(b, publicseed), sk = EncodePolynomial(s))
10: end procedure

e e NT s LN

NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

sspPace

NEWHOPE CPA-PKE

1: procedure NEWHOPE.CPAPKE.GEN ()

a < GenA(publicseed)

s < PolyBitRev(Sample(noiseseed, 0— R))

§ = NTT(s)

e < PolyBitRev(Sample(noiseseed, 1— R))

é = NTT(e)

b=axs+eé

Return
(pk = EncodePK(b, publicseed), sk = EncodePolynomial(s))
10: end procedure

e B A T

NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

sspPace

Frodo KEM

e Frodo, similar to NewHope is a suite of KEM
(NewHope-CPA/CCA-KEM) based on the General LWE
problem.

e We identify the same vulnerable usage of nonce for sampling
S and E.

NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

=Ll

Frodo CPA-PKE

1: procedure FRODO.CPAPKE.GEN()

2: seedp + U({0,1}ena)

3 A < Frodo.Gen(seeda) € Zy*"

4: seedg < U({0,1}"®)

5: S < Frodo.SampleMatrix(seedg, 1) € Zy*"

6 E < Frodo.SampleMatrix(seedg, 2) € Zy*"

7 B=AXS+E

8: Public key pk < (seeda,B) and Secret key sk < S
9: end procedure

NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

sspPace

Frodo CPA-PKE

1: procedure FRODO.CPAPKE.GEN()

2: seedp + U({0,1}ena)

3 A < Frodo.Gen(seeda) € Zy*"

4: seedg < U({0,1}"®)

5: S < Frodo.SampleMatrix(seedg, 1= R) € Zy*"

6 E < Frodo.SampleMatrix(seedg, 2— R) € Zy*"

7 B=AXS+E

8: Public key pk < (seeda,B) and Secret key sk < S
9: end procedure

NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

sspPace

Frodo CPA-PKE

1: procedure FRODO.CPAPKE.GEN()

2: seedp + U({0,1}ena)

3 A < Frodo.Gen(seeda) € Zy*"

4: seedg < U({0,1}"®)

5: S < Frodo.SampleMatrix(seedg, 1= R) € Zy*"

6 E < Frodo.SampleMatrix(seedg, 2— R) € Zy*"

7 B=AXS+E

8: Public key pk < (seeda,B) and Secret key sk < S
9: end procedure

% NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

sspPace

Kyber KEM

e Kyber is a suite of KEM (NewHope-CPA/CCA-KEM) based
on the MLWE problem

e Sc Rl; and E € Rf; are sampled from a Centered Binomial
distribution.

e Same seeds appended with fixed nonces are yet again used in
sampling S and E.

NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

sspPace

Kyber KEM

e Kyber is a suite of KEM (NewHope-CPA/CCA-KEM) based
on the MLWE problem

e Sc Rl; and E € Rf; are sampled from a Centered Binomial
distribution.

e Same seeds appended with fixed nonces are yet again used in
sampling S and E.

e In NIST submission, designers use nonce=(0 to k-1) for S and
nonce=(k to 2k-1) for E.

NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

sspPace

Kyber CPA-PKE

For i fromOto k—1
sli] «+ CBD,(PRF(c, N))
10: N:=N+1
11: EndFor
12: For i from O to k — 1
13: eli] +— CBD,(PRF(o, N))
14: N:=N+1
15: EndFor
16: &<« NTT(s)
17: t=NTT 1(a%8)+e
18: pk := (Encodeg, (Compress, (t, d:))||p)
19: Secret Key := Encode;3(8 mod™q)
20: Return (Public Key,Secret Key)
21: end procedure

1: procedure KYBER.CPAPKE.GEN()

2: d +{0,1}?%6, (p,0) := G(d), N :=0
3: ForifromOtok—1

4: For jfromOtok—1

5. alil[j] « Parse(XOF(p]ljli))

6: EndFor

7: EndFor

8:

9:

w5

NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

sspPace

Kyber CPA-PKE

For i fromOto k—1
si] + CBD,(PRF(o, N R))
10: N:=N+1
11: EndFor
12: For i from O to k — 1
13: eli] + CBD,(PRF(o, N— R))
14: N:=N+1
15: EndFor
160 &+« NTT(s)
17: t=NTT 1(a%8)+e
18: pk := (Encodeg, (Compress, (t,d:))||p)
19: Secret Key := Encode;3(8 mod™q)
20: Return (Public Key,Secret Key)
21: end procedure

1: procedure KYBER.CPAPKE.GEN()

2: d +{0,1}?%6, (p,0) := G(d), N :=0
3: ForifromOtok—1

4: For jfromOtok—1

5. alil[j] « Parse(XOF(p]ljli))

6: EndFor

7: EndFor

8:

9:

w5

NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

sspPace

Kyber CPA-PKE

For i fromOto k—1
sli] + CBD, (PRF(o, N— R))
10: N:=N+1
11: EndFor
12: For i from O to k — 1
13: eli] +- CBD,(PRF(o, N— R))
14: N:=N+1
15: EndFor
160 &+« NTT(s)
17: t=NTT 1(a%8)+e
18: pk := (Encodeg, (Compress, (t,d:))||p)
19: Secret Key := Encode;3(8 mod™q)
20: Return (Public Key,Secret Key)
21: end procedure

1: procedure KYBER.CPAPKE.GEN()

2: d +{0,1}?%6, (p,0) := G(d), N :=0
3: ForifromOtok—1

4: For jfromOtok—1

5. alil[j] « Parse(XOF(p]ljli))

6: EndFor

7: EndFor

8:

9:

w5

NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

sspPace

Kyber CPA-PKE

For i fromOto k—1
si] + CBD,(PRF(o, N R))
10: N:=N+1
11: EndFor
12: For i from O to k — 1
13: eli] +- CBD,(PRF(o, N— R))
14: N:=N+1
15: EndFor
16: 8+« NTT(s)
17: t=NTT 1(a%8)+e
18: Public Key := (Encodeg, (Compress, (t,dt))||p) **** Adds more error
19: Secret Key := Encode;3(8 mod™q)
20: Return (Public Key,Secret Key)
21: end procedure

1: procedure KYBER.CPAPKE.GEN()

2: d +{0,1}?%6, (p,0) := G(d), N :=0
3: ForifromOtok—1

4: For jfromOtok—1

5. alil[j] « Parse(XOF(p]ljli))

6: EndFor

7: EndFor

8:

9:

w5

NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

sspPace

Key Recovery Attack on Kyber

e The Compress function rounds each coefficient to a lower
modulus thereby inherently introducing additional
deterministic error.

e Though the induced fault nullified the error in the LWE
instance, the LWR hardness might stil not be possible to
break.

NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

sspPace

Key Recovery Attack on Kyber

e The Compress function rounds each coefficient to a lower
modulus thereby inherently introducing additional
deterministic error.

e Though the induced fault nullified the error in the LWE

instance, the LWR hardness might stil not be possible to
break.

e The authors have only considered rounding for efficiency and
not for security.

w5

% NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

sspPace

Key Recovery Attack on Kyber

e The Compress function rounds each coefficient to a lower
modulus thereby inherently introducing additional
deterministic error.

e Though the induced fault nullified the error in the LWE

instance, the LWR hardness might stil not be possible to
break.

e The authors have only considered rounding for efficiency and
not for security.

e The authors state that “we believe that the compression
technique adds some security”, but it has not been quantified.

w5

% NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

fis PaCE

Key Recovery Attack on Kyber

w5

The Compress function rounds each coefficient to a lower
modulus thereby inherently introducing additional
deterministic error.

Though the induced fault nullified the error in the LWE
instance, the LWR hardness might stil not be possible to
break.

The authors have only considered rounding for efficiency and
not for security.

The authors state that “we believe that the compression
technique adds some security”, but it has not been quantified.

Thus, our fault does not result in direct key recovery attack,
but brings down the hardness to solving the corresponding
LWR problem.

@ NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

sspPace

Dilithium Signature Scheme

e Dilithium is a Fiat-Shamir Abort-based lattice signature
scheme.

e Indistinguishability of the Public key is based on the MLWE
problem.

e Here again, nonces appended with domain separators are used
to sample S € Rf and E € R}.

NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

sspPace

Dilithium Signature Scheme

. procedure DILITHIUM.KEYGEN ()

p,p' +{0,1}2%6, K « {0,1}2%%, N :=0

: ForifromOtofl—1
s1[i] := Sample(PRF (p’, N))
N:=N+1

EndFor

For i from O to k — 1
sali] := Sample(PRF (p’, N))
N:=N+1

10: EndFor A ~ R’;Xl := ExpandA(p)

11: Compute t = A X s1 + s2

12: Compute t; := Power2Round,(t, d)

13: tr € {0,1}3%4 := CRH(p||t1)

14: Return pk = (p,t1), sk = (p, K, tr,s1,s2,to0)

15: end procedure

CRONDO W

NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

sspPace

Dilithium Signature Scheme

. procedure DILITHIUM.KEYGEN ()

p,p' +{0,1}2%6, K « {0,1}2%%, N :=0

: ForifromOtofl—1
s1[i] := Sample(PRF (p', N— R))
N:=N-+1

EndFor

For i from O to k — 1
so[i] := Sample(PRF(p’, N— R))
N:=N+1

10: EndFor A ~ RI;XZ := ExpandA(p)

11: Compute t = A X s1 + s2

12: Compute t; := Power2Round,(t, d)

13: tr € {0,1}3%* := CRH(p||t1)

14: Return pk = (p,t1), sk = (p, K, tr,s1,s2,t0)

15: end procedure

QRN W

NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

sspPace

Dilithium Signature Scheme

. procedure DILITHIUM.KEYGEN ()

p,p' +{0,1}2%6, K « {0,1}2%%, N :=0

: ForifromOtofl—1
s1[i] := Sample(PRF (p', N— R))
N:=N-+1

EndFor

For i from O to k — 1
so[i] := Sample(PRF(p’, N— R))
N:=N+1

10: EndFor A ~ RI;XZ := ExpandA(p)

11: Compute t = A X s1 + s2

12: Compute t; := Power2Round,(t, d)

13: tr € {0,1}3%* := CRH(p||t1)

14: Return pk = (p,t1), sk = (p, K, tr,s1,s2,t0)

15: end procedure

QRN W

NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

sspPace

Dilithium Signature Scheme

QRN W

. procedure DILITHIUM.KEYGEN ()

p,p' +{0,1}2%6, K « {0,1}2%%, N :=0

: ForifromOtol—1

s1[i] := Sample(PRF (p', N— R))
N:=N+1

EndFor

ForifromOto k—1
sali] := Sample(PRF (p', N— R))
N:=N+1

: EndFor A ~ RI;XZ := ExpandA(p)

Compute t = A X s1 + s2

Compute t1 := Power2Round, (t,d) ***** Only the top d bits of t
tr € {0,1}384 := CRH(p||t1)

Return pk = (p,t1), sk = (p, K, tr,s1,s2,t0)

. end procedure

NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

sspPace

Key Recovery Attack on Dilithium

e Only the higher order bits of the LWE instance t are declared
as the public key.

% NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

sspPace

Key Recovery Attack on Dilithium

e Only the higher order bits of the LWE instance t are declared
as the public key.

e Some rounding error is introduced on top of the LWE instance
t.

NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

sspPace

Key Recovery Attack on Dilithium

e Only the higher order bits of the LWE instance t are declared
as the public key.

e Some rounding error is introduced on top of the LWE instance
t.

e Security Analysis of Dilithium assumes that the whole of t is
known to the adversary. The original LWE instance t can be
derived just through observation of a large number of
signatures.

w5

% NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

sspPace

Key Recovery Attack on Dilithium

e Only the higher order bits of the LWE instance t are declared
as the public key.

e Some rounding error is introduced on top of the LWE instance
t.

e Security Analysis of Dilithium assumes that the whole of t is
known to the adversary. The original LWE instance t can be
derived just through observation of a large number of
signatures.

e If the whole of t can be derived by the adversary, our induced
faults results in a key recovery attack.

w5

% NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

sspPace

Table of Contents

© Message Recovery Attacks

% NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

fispaces
NEWHOPE CPA-PKE

1: procedure
NEWHOPE . CPAPKE . ENC(pk € {0, ...,255}77/4+32 |, ¢
{0,...,255}32 coin € {0, ...,255}32)

2: :
3: § < PolyBitRev(Sample(coin,0))
4: é < PolyBitRev(Sample(coin, 1))
5: é + Sample(coin, 2)
6: t=NTT($)
7. G =axt+NIT(é)
8: v = Encode(u)
90 Vv=NIT !(bxt)+é+v
10: h = Compress(V)

11: Return ¢ = EncodeC(u, h)
12: end procedure

NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

fispaces
NEWHOPE CPA-PKE

1: procedure
NEWHOPE . CPAPKE . ENC(pk € {0, ...,255}77/4+32 |, ¢
{0,...,255}32 coin € {0, ...,255}32)

2: :
3: § < PolyBitRev(Sample(coin,0— R))
4: é < PolyBitRev(Sample(coin,1— R))
5: é + Sample(coin, 2)
6: t=NTT($)
7. G=axt+NTT(é)
8: v = Encode(u)
90 Vv=NIT !(bxt)+é+v
10: h = Compress(V)

11: Return ¢ = EncodeC(u, h)
12: end procedure

NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

fispaces
NEWHOPE CPA-PKE

1: procedure
NEWHOPE . CPAPKE . ENC(pk € {0, ...,255}77/4+32 |, ¢
{0,...,255}32 coin € {0, ...,255}32)

2: :
3: § < PolyBitRev(Sample(coin,0— R))
4: é < PolyBitRev(Sample(coin,1— R))
5: é + Sample(coin, 2)
6: t=NTT($)
7. G=axt+NIT(é)
8: v = Encode(u)
90 Vv=NIT !(bxt)+é+v
10: h = Compress(V)

11: Return ¢ = EncodeC(u, h)
12: end procedure

NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

fispaces
NEWHOPE CPA-PKE

1: procedure
NEWHOPE . CPAPKE . ENC(pk € {0, ...,255}77/4+32 |, ¢
{0,...,255}32 coin € {0, ...,255}32)

2: :
3: § < PolyBitRev(Sample(coin,0— R))
4: é < PolyBitRev(Sample(coin,1— R))
5: é + Sample(coin, 2)
6: t=NTT($)
7. G=axt+NIT(é)
8: v = Encode(u)
90 Vv=NTT Y(bxt)+é+v
10: h = Compress(V)

11: Return ¢ = EncodeC(u, h)
12: end procedure

NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

fispaces
NEWHOPE CPA-PKE

1: procedure
NEWHOPE . CPAPKE . ENC(pk € {0, ...,255}77/4+32 |, ¢
{0,...,255}32 coin € {0, ...,255}32)

2: :
3: § < PolyBitRev(Sample(coin,0— R))
4: é < PolyBitRev(Sample(coin,1— R))
5: é + Sample(coin, 2)
6: t=NTT($)
7. G=axt+NIT(é)
8: v = Encode(u)
90 Vv=NTT Y(bxt)+é+v
10: h = Compress(V)

11: Return ¢ = EncodeC(u, h)
12: end procedure

NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

fispaces
NEWHOPE CPA-PKE

1: procedure
NEWHOPE . CPAPKE . ENC(pk € {0, ...,255}77/4+32 |, ¢
{0,...,255}32 coin € {0, ...,255}32)

2: :
3: § < PolyBitRev(Sample(coin,0— R))
4: é < PolyBitRev(Sample(coin,1— R))
5: é + Sample(coin, 2)
6: t=NTT($)
7. G=axt+NIT(é)
8: v = Encode(u)
9 V=NTT Y(bxt)+¢é+
10: h = Compress(V)

11: Return ¢ = EncodeC(u, h)
12: end procedure

NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

fispaces
NEWHOPE CPA-PKE

1: procedure
NEWHOPE . CPAPKE . ENC(pk € {0, ...,255}77/4+32 |, ¢
{0,...,255}32 coin € {0, ...,255}32)

2: :
3: § < PolyBitRev(Sample(coin,0— R))
4: é < PolyBitRev(Sample(coin,1— R))
5: é + Sample(coin, 2)
6: t=NTT($)
7. G=axt+NIT(é)
8: v = Encode(u)
9 V=NTT Y(bxt)+¢é+
10: h = Compress(V)

11: Return ¢ = EncodeC(u, h)
12: end procedure

NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

sspPace

NEWHOPE CPA-PKE

1: procedure
NEWHOPE . CPAPKE . ENC(pk € {0, ...,255}77/4+32 |, ¢
{0,...,255}32 coin € {0, ...,255}32)

2: :
3: § < PolyBitRev(Sample(coin,0— R))
4: é < PolyBitRev(Sample(coin,1— R))
5: é + Sample(coin, 2)
6 £=NTT(8)
7: = axt+ NTT(é)
8: v = Encode(/t)
9 V=NTT Y(bxt)+¢é+
10: h = Compress(V)

11: Return ¢ = EncodeC(u, h)
12: end procedure

NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

sspPace

FRODO CPA-PKE

1: procedure FRODO.CPAPKE.ENC ()

2: seedg + U ({0, 1}{enE)

3 S < Frodo.SampleMatrix(seedg, 4) € Zj™*"
4. E « Frodo.SampleMatrix(seedg, 5) € Zy"
5 E <+ Frodo.SampleMatrix(seedg, 6) € <
6: ComputeBzSXA—l—E‘

7: Compute V = S x B + E + Frodo.Encode(y1)
8: Ciphertext C + (C1,C3) = (B,V)

9: end procedure

NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

sspPace

FRODO CPA-PKE

1: procedure FRODO.CPAPKE.ENC ()

2: seedg + U ({0, 1}{e"E)

3 S < Frodo.SampleMatrix(seedg, 4— R) € Zj™"
4: E <+ Frodo.SampleMatrix(seedg, 5— R) € "
5 E <+ Frodo.SampleMatrix(seedg, 6) € <

6: ComputeBzSXA—l—E‘

7: Compute V = S x B + E + Frodo.Encode(y1)

8: Ciphertext C + (C1,C3) = (B,V)

9: end procedure

NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

sspPace

FRODO CPA-PKE

1: procedure FRODO.CPAPKE.ENC ()

2: seedg + U ({0, 1}{e"E)

3 S < Frodo.SampleMatrix(seedg, 4— R) € Zj™"
4: E <+ Frodo.SampleMatrix(seedg, 5— R) € "
5 E <+ Frodo.SampleMatrix(seedg, 6) € <

6: ComputeB:SxA+E

7: Compute V = S x B + E + Frodo.Encode(y1)

8: Ciphertext C + (C1,C3) = (B,V)

9: end procedure

NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

sspPace

FRODO CPA-PKE

1: procedure FRODO.CPAPKE.ENC ()

2: seedg + U ({0, 1}{e"E)

3 S < Frodo.SampleMatrix(seedg, 4— R) € Zj™"
4: E <+ Frodo.SampleMatrix(seedg, 5— R) € "
5 E <+ Frodo.SampleMatrix(seedg, 6) € <

6: ComputeB:SxA+E

7: Compute V = S x B + E + Frodo.Encode(y)
8: Ciphertext C + (C1,C3) = (B,V)

9: end procedure

NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

sspPace

FRODO CPA-PKE

1: procedure FRODO.CPAPKE.ENC ()

2: seedg + U ({0, 1}{e"E)

3 S < Frodo.SampleMatrix(seedg, 4— R) € Zj™"
4: E <+ Frodo.SampleMatrix(seedg, 5— R) € "
5 E <+ Frodo.SampleMatrix(seedg, 6) € <

6: ComputeB:SxA+E

7: Compute V = S x B + E + Frodo.Encode(y)
8: Ciphertext C + (C1,C3) = (B,V)

9: end procedure

NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

sspPace

FRODO CPA-PKE

1: procedure FRODO.CPAPKE.ENC ()

2: seedg + U ({0, 1}{e"E)

3 S < Frodo.SampleMatrix(seedg, 4— R) € Zj™"
4: E <+ Frodo.SampleMatrix(seedg, 5— R) € "
5 E <+ Frodo.SampleMatrix(seedg, 6) € <

6: ComputeB:SxA+E

7: Compute V = S x B + I + Frodo.Encode(//)
8: Ciphertext C + (C1,C3) = (B,V)

9: end procedure

NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

sspPace

KYBER CPA-PKE

1: procedure KYBER.CPAPKE.ENC(pk € Bt k'n/8+32 m ¢ B32 1 ¢ j332)
2: N=0

3: ForifromOtok—1
4: r[i] + CBD,(PRF(r, N))
5: N:=N-+1
6: EndFor

7: ForifromOtok—1

8: ey + CBD,(PRF(r,N))

9: N:=N-+1

10: EndFor

11: For i from 0 to k — 1 ez <— CBD;(PRF(r, N))

12: EndFor

13: r=NTT(r)

14: u=NTT }aT *#) +e;

15: v=NTT 1T % #) + ex + Decode; (Decompose, (m, 1))
16: c1 = Encodeg, (Compress, (u, du))

17: c2 = Encodey, (Compress (v, dy))

18: c = (c1,c2)

19: end procedure

NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

sspPace

KYBER CPA-PKE

1: procedure KYBER.CPAPKE.ENC(pk € Bt k'n/8+32 m ¢ B32 1 ¢ j332)
2: N=0

3: ForifromOtok—1
4: rli] + CBD,(PRF(r, N— R))
5: N:=N-+1
6: EndFor

7: ForifromOtok—1

8: e; < CBD,(PRF(r, N— R))

9: N:=N-+1

10: EndFor

11: For i from 0 to k — 1 ez <— CBD;(PRF(r, N))

12: EndFor

13: r=NTT(r)

14: u=NTT }aT *#) +e;

15: v=NTT (T % #) + ex + Decode; (Decompose, (m, 1))
16: c1 = Encodeg, (Compress, (u, du))

17: c2 = Encodey, (Compress (v, dy))

18: c = (c1,c2)

19: end procedure

NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

sspPace

KYBER CPA-PKE

1: procedure KYBER.CPAPKE.ENC(pk € Bt k'n/8+32 m ¢ B32 1 ¢ j332)
2: N=0

3: ForifromOtok—1
4: rli] + CBD,(PRF(r, N— R))
5: N:=N-+1
6: EndFor

7: ForifromOtok—1

8: e; < CBD,(PRF(r, N— R))

9: N:=N-+1

10: EndFor

11: For i from 0 to k — 1 ez <— CBD;(PRF(r, N))

12: EndFor

13: r=NTT(r)

14: u=NTT!@aT *¢) +er

15: v=NTT 1T % #) + ex + Decode; (Decompose, (m, 1))
16: c1 = Encodeg, (Compress, (u, du))

17: c2 = Encodey, (Compress (v, dy))

18: c = (c1,c2)

19: end procedure

NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

sspPace

KYBER CPA-PKE

1:
2:
3:
4:
5:
6:
7:
8:

procedure KYBER.CPAPKE.ENC(pk € B kn/8432 ¢ 332 1 ¢ B32)
N=0
For i from O to k —1
r[i] - CBD,(PRF(r, N— R))
N:=N+1
EndFor
ForifromOto k—1
e; < CBD,(PRF(r, N— R))
N:=N+1
: EndFor
: For i from 0 to k — 1 ez <— CBD,(PRF(r, N))
: EndFor
r=NTT(r)

u=NTT!@aT *¢) +er

v=NTT 1T % #) + ex + Decode; (Decompose, (m, 1))
c1 = Encodeg, (Compress, (u,dy)) **** Adds more error
c2 = Encodey, (Compress (v, dy))

c=(c1,c2)

. end procedure

NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

sspPace

Translating Message Recovery Attack to CCA-KEM
schemes

o CPA-secure PKE is transformed to CCA-secure KEM using
the Quantum-Fujisaki Okamoto transformation.

e A re-encapsulation is performed in the decapsulation
procedure to check for the validity of ciphertexts.

NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

sspPace

Translating Message Recovery Attack to CCA-KEM
schemes

o CPA-secure PKE is transformed to CCA-secure KEM using
the Quantum-Fujisaki Okamoto transformation.

e A re-encapsulation is performed in the decapsulation
procedure to check for the validity of ciphertexts.

e Thus, faults injected into the encapsulation procedure are
detected during decapsulation.

w5

% NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

sspPace

Translating Message Recovery Attack to CCA-KEM
schemes

CPA-secure PKE is transformed to CCA-secure KEM using
the Quantum-Fujisaki Okamoto transformation.

e A re-encapsulation is performed in the decapsulation
procedure to check for the validity of ciphertexts.

Thus, faults injected into the encapsulation procedure are
detected during decapsulation.

How do we bypass this?

w5

% NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

fis PaCE

Translating Message Recovery Attack to CCA-KEM
schemes

o CPA-secure PKE is transformed to CCA-secure KEM using
the Quantum-Fujisaki Okamoto transformation.

e A re-encapsulation is performed in the decapsulation
procedure to check for the validity of ciphertexts.

e Thus, faults injected into the encapsulation procedure are
detected during decapsulation.

e How do we bypass this?

e We observe that a fault attacker in a Man-In-The-Middle

(MITM) setting can still mount the attack without being
detected during decapsulation.

w5

@ NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

sspPace

Message Recovery Attack over CCA-KEM schemes

Alice (Encapsulation)

Bob(Decapsulation)
m=Decrypt(sk,C)
- T == c,.=Encrypt(pk,m)
C’ = Encrypt’(pk,m) X dec = l’\f Pk,
SSaiice = Genkey(C’,m) A If (Cgec==C):
6 == 1 - - SSgop = Genkey(C,m)
1 Else: SSg,, = RandomKey
Interrupted by Eve
- —
: 8 Eve (Attacker) g
C g ve acker C 8
35 o
w m=Attack(pk,C’) a
SSAlice = GenkeY(C'lm)
C = Encrypt(pk,m)
>SS, = Genkey(C,m)

Figure: Fault assisted MITM attack on CCA Secure KEM scheme

NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

sspPace

Table of Contents

@ Experimental Validation

% NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

sspPace

Experimental Validation on ARM Cortex-M4

o We target reference implementations from the pgm4
benchmarking framework for PQC candidates on the ARM
Cortex-M4 microcontroller.

e Implementations were ported to the STM32F4DISCOVERY
board (DUT) housing the STM32F407 microcontroller.

o Clock Frequency: 24 MHz.

NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

sspPace

Analysis of implementation for Fault Vulnerability

e We target the usage (not generation) of nonce in all reference
implementations.

% NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

sspPace

Analysis of implementation for Fault Vulnerability

e We target the usage (not generation) of nonce in all reference
implementations.

e The seed to the Sample function along with the nonce is
input as an array A to an XOF function.

NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

sspPace

Analysis of implementation for Fault Vulnerability

e We target the usage (not generation) of nonce in all reference
implementations.

e The seed to the Sample function along with the nonce is
input as an array A to an XOF function.

e The nonce is stored as the last element of the array.

NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

sspPace

Analysis of implementation for Fault Vulnerability

e We target the usage (not generation) of nonce in all reference
implementations.

e The seed to the Sample function along with the nonce is
input as an array A to an XOF function.

e The nonce is stored as the last element of the array.

NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

sspPace

Analysis of implementation for Fault Vulnerability

e We target the usage (not generation) of nonce in all reference
implementations.

e The seed to the Sample function along with the nonce is
input as an array A to an XOF function.

e The nonce is stored as the last element of the array.

NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

sspPace

Analysis of implementation for Fault Vulnerability

e We target the usage (not generation) of nonce in all reference
implementations.

e The seed to the Sample function along with the nonce is
input as an array A to an XOF function.

e The nonce is stored as the last element of the array.

NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

sspPace

Analysis of implementation for Fault Vulnerability

e We target the usage (not generation) of nonce in all reference
implementations.

e The seed to the Sample function along with the nonce is
input as an array A to an XOF function.

e The nonce is stored as the last element of the array.

NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

sspPace

Analysis of implementation for Fault Vulnerability

e We target the usage (not generation) of nonce in all reference
implementations.

e The seed to the Sample function along with the nonce is
input as an array A to an XOF function.

e The nonce is stored as the last element of the array.

e For all the call instances to this XOF function, all the
elements of the array A are the same except the nonce value.

NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

sspPace

Analysis of implementation for Fault Vulnerability

e We target the usage (not generation) of nonce in all reference
implementations.

e The seed to the Sample function along with the nonce is
input as an array A to an XOF function.

e The nonce is stored as the last element of the array.

e For all the call instances to this XOF function, all the
elements of the array A are the same except the nonce value.

o If this nonce-store to the array is skipped, we are essentially
using the same randomness to sample both S and E.

NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

sspPace

Analysis of implementation for Fault Vulnerability

1dr r3, [r5,#28] movs rl,#1
stmia r4!,{r0,r1,r2,r3} add r0,sp,#52
strb.w r7,[r6,#-132]! strb.w r9,[r6,#32]
movs rl,#1 movs r2,#33
mov r0,r6 movs r3,#0

(a) Target operation in NewHope (b) Target operation in Kyber
lsrs r2,r7 ,#8 movs rl,#128
1dr r3, [pc,#264] 1ldr r0, [pc,#208]
strb.w r2,[sp,#7] strb.w r7,[sp,#44]
movw r2 ,#4097 add rl,sp,#12
mov rl,sp add r0,sp,#48

(c) Target operation in Frodo (d) Target operation in Dilithium

ANYANG TECHNOLOGICAL UNIVERSITY | SINGAPO

Experimental Setup

EM pulse
generator

l Injection Probe ' '
but
(ARM Cortex-M4F) i

X-Y Table

Figure: Description of our EMFI setup

NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

sspPace

sspPace

Experimental Setup

Figure: (1) EM Pulse Generator (2) USB-Microscope (3) STM32M4F
Discovery Board (DUT) (4) Arudino based Relay Shield (5) Controller
Laptop (6) Oscilloscope (7) EM Pulse Injector (8) XYZ Motorized Table

NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

sspPace

Experimental Setup

(a)

Figure: (a) Hand-made probe used for our EMFI setup (b) Probe placed
over the DUT

ANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

sspPace

Results on ARM Cortex-M4

¢ Required Fault: Skip the store instruction to a particular
memory location.

o We profiled the ARM chip using a sample load and store
program to find a "sweet spot” to skip the store to a
particular memory location.

NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

fepaces
Results on ARM Cortex-M4

¢ Required Fault: Skip the store instruction to a particular
memory location.

o We profiled the ARM chip using a sample load and store
program to find a "sweet spot” to skip the store to a
particular memory location.

o Fault sensitive region is the area near the ARM logo of the
STM32M4F07 microcontroller.

NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

sspPace

Results on ARM Cortex-M4

¢ Required Fault: Skip the store instruction to a particular
memory location.

o We profiled the ARM chip using a sample load and store
program to find a "sweet spot” to skip the store to a
particular memory location.

o Fault sensitive region is the area near the ARM logo of the
STM32M4F07 microcontroller.

e Fault repeatability is (almost) 100% at the identified location
for a specific set of voltage pulse parameters.

w5

% NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

fis PaCE

Results on ARM Cortex-M4

¢ Required Fault: Skip the store instruction to a particular
memory location.

o We profiled the ARM chip using a sample load and store
program to find a "sweet spot” to skip the store to a
particular memory location.

o Fault sensitive region is the area near the ARM logo of the
STM32M4F07 microcontroller.

e Fault repeatability is (almost) 100% at the identified location
for a specific set of voltage pulse parameters.

e Voltage:150V-200V, Pulse Width = 12nsec, Rise-Time = 2

nsec.

w5

@ NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

fis PaCE

Results on ARM Cortex-M4

¢ Required Fault: Skip the store instruction to a particular
memory location.

o We profiled the ARM chip using a sample load and store
program to find a "sweet spot” to skip the store to a
particular memory location.

o Fault sensitive region is the area near the ARM logo of the
STM32M4F07 microcontroller.

e Fault repeatability is (almost) 100% at the identified location
for a specific set of voltage pulse parameters.

e Voltage:150V-200V, Pulse Width = 12nsec, Rise-Time = 2
nsec.

o Faults were synchronized with the target operation using an
internally generated trigger.

w5

@ NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

sspPace

Fault Complexity

Attack Ob, jectiveA Fault Complexity

NEWHOPE FRODO

NEWHOPE512 NEWHOPE1024 Frodo-640 Frodo-976

Key Recovery 1 1 1 1

Message Recovery 1 1 1 1

KYBER DILITHIUM

KYBER512 KYBER768 KYBER1024 Weak Med. Rec. High

Key Recovery 2 3 4 2 3 4 5
Message Recovery 2 3 4 - - - -

NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

sspPace

Fault Complexity

Attack Objective Fault Complexity
NEWHOPE FRODO

NEWHOPE512 NEWHOPE1024 Frodo-640 Frodo-976

Key Recovery 1 1 1 1

Message Recovery 1 1 1 1

KYBER DILITHIUM
KYBER512 KYBER768 KYBER1024 Weak Med. Rec. High

Key Recovery 2 3 4 2 3 4 5
Message Recovery 2 3 4 - - - -

e Security of Kyber is weakened because the induced fault has
removed the hardness from the LWE problem.

NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

sspPace

Fault Complexity

Attack Objective Fault Complexity
NEWHOPE FRODO

NEWHOPE512 NEWHOPE1024 Frodo-640 Frodo-976

Key Recovery 1 1 1 1

Message Recovery 1 1 1 1

KYBER DILITHIUM
KYBER512 KYBER768 KYBER1024 Weak Med. Rec. High

Key Recovery 2 3 4 2 3 4 5
Message Recovery 2 3 4 - - - -

e Security of Kyber is weakened because the induced fault has
removed the hardness from the LWE problem.

e If enough number of signatures corresponding to the same
public-private key pair can be observed, then it can lead to a
successful key recovery attack on Dilithium.

4 NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

sspPace

Table of Contents

@ Countermeasures

NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

sspPace

Countermeasures and Future Directions

Usage of separate seeds for S and E

Frodo has updated its specifications as part of its second
round submission by using separate seeds for S and E.

Synchronization of faults with vulnerable operations.

Study on weakened LWE instances in Kyber and Dilithium.

NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

sspPace

Table of Contents

@ Conclusion

% NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

sspPace

Conclusion

o We identified fault-vulnerabilities due to usage of nonces in
multiple LWE-based lattice schemes.

e We proposed key recovery attacks over NewHope, Frodo,
Kyber and Dilithium and message recovery attacks over
NewHope, Frodo and Kyber KEM schemes.

e Practical Validation of our attack through EMFI on
implementations from pgm4 library on the ARM Cortex-M4
microcontroller.

e We hope that nonces either be avoided or be used more
carefully in the future.

w5

% NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

sspPace

Thank you!

Any questions?

NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

	Context
	Lattice based Crypto: Background
	Fault Vulnerability
	Key Recovery Attacks
	Message Recovery Attacks
	Experimental Validation
	Countermeasures
	Conclusion

